7,495 research outputs found

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system

    ALB Evaluation for NOAA charting requirements

    Get PDF
    The National Oceanic and Atmospheric Administration (NOAA) acquires hydrographic data around the coasts of the US and its territories using in-house surveys and contracting resources. Hydrographic data are primarily collected using sonar systems, while a small percent is acquired via Airborne Lidar Bathymetry (ALB) for nearshore areas. NOAA has an ongoing requirement, as per the Coast and Geodetic Survey Act of 1947, to survey nearshore areas as part of its coastal mapping activities, including updating nautical charts, creating hydrodynamic models and supporting coastal planning and habitat mapping. NOAA has initiated a project to investigate the potential use of ALB data from non-hydrographic survey programmes (i.e., programmes designed to support objectives other than nautical charting and with specifications and requirements that differ from those of NOAA hydrographic surveys) in order to increase the amount of data available to meet these nearshore mapping requirements. THIS PAPER PRESENTS AN evaluation of ALB data from the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP) for use by NOAA’s Offi ce of Coast Survey (OCS). Th ese NCMP datasets were evaluated through a statistical comparison to bathymetric surfaces derived from hydrographic NOAA surveys. Th e objectives of the analysis were: 1. to assess the level of agreement between the NCMP and OCS data in areas of overlap in a variety of coastal environments and 2. to determine whether NCMP ALB survey data can be compiled with NOAA OCS hydrographic data to generate seamless shallowbathymetry digital elevation modes (DEMs)

    Real time flight simulation methodology

    Get PDF
    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals

    A polymorphic reconfigurable emulator for parallel simulation

    Get PDF
    Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described

    Rooted Cycle Bases

    Full text link
    A cycle basis in an undirected graph is a minimal set of simple cycles whose symmetric differences include all Eulerian subgraphs of the given graph. We define a rooted cycle basis to be a cycle basis in which all cycles contain a specified root edge, and we investigate the algorithmic problem of constructing rooted cycle bases. We show that a given graph has a rooted cycle basis if and only if the root edge belongs to its 2-core and the 2-core is 2-vertex-connected, and that constructing such a basis can be performed efficiently. We show that in an unweighted or positively weighted graph, it is possible to find the minimum weight rooted cycle basis in polynomial time. Additionally, we show that it is NP-complete to find a fundamental rooted cycle basis (a rooted cycle basis in which each cycle is formed by combining paths in a fixed spanning tree with a single additional edge) but that the problem can be solved by a fixed-parameter-tractable algorithm when parameterized by clique-width.Comment: 12 pages with 10 additional pages of appendices and 10 figures. Extended version of a paper to appear at the 14th Algorithms and Data Structures Symposium (WADS), Victoria, BC, August 201

    Turbulence and Mixing in the Intracluster Medium

    Full text link
    The intracluster medium (ICM) is stably stratified in the hydrodynamic sense with the entropy ss increasing outwards. However, thermal conduction along magnetic field lines fundamentally changes the stability of the ICM, leading to the "heat-flux buoyancy instability" when dT/dr>0dT/dr>0 and the "magnetothermal instability" when dT/dr<0dT/dr<0. The ICM is thus buoyantly unstable regardless of the signs of dT/drdT/dr and ds/drds/dr. On the other hand, these temperature-gradient-driven instabilities saturate by reorienting the magnetic field (perpendicular to r^\hat{\bf r} when dT/dr>0dT/dr>0 and parallel to r^\hat{\bf r} when dT/dr<0dT/dr<0), without generating sustained convection. We show that after an anisotropically conducting plasma reaches this nonlinearly stable magnetic configuration, it experiences a buoyant restoring force that resists further distortions of the magnetic field. This restoring force is analogous to the buoyant restoring force experienced by a stably stratified adiabatic plasma. We argue that in order for a driving mechanism (e.g, galaxy motions or cosmic-ray buoyancy) to overcome this restoring force and generate turbulence in the ICM, the strength of the driving must exceed a threshold, corresponding to turbulent velocities 10100km/s\gtrsim 10 -100 {km/s}. For weaker driving, the ICM remains in its nonlinearly stable magnetic configuration, and turbulent mixing is effectively absent. We discuss the implications of these findings for the turbulent diffusion of metals and heat in the ICM.Comment: 8 pages, 2 figs., submitted to the conference proceedings of "The Monster's Fiery Breath;" a follow up of arXiv:0901.4786 focusing on the general mixing properties of the IC

    Thermal System Verification and Model Validation for NASA's Cryogenic Passively Cooled James Webb Space Telescope

    Get PDF
    A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description of the three aspects of the thermal verification and model validation plan is presented

    Motion software for a synergistic six-degree-of-freedom motion base

    Get PDF
    Computer software for the conversion of fixed-base simulations into moving-base simulations utilizing a synergistic six-degree-of-freedom motion simulator has been developed. This software includes an actuator extension transformation, inverse actuator extension transformation, a centroid transformation, and a washout circuit. Particular emphasis is placed upon the washout circuitry as adapted to fit the synergistic motion simulator. The description of the washout circuitry and illustration by means of a sample flight emphasize that translational cue representation may be of good fidelity, but care in the selection of parameters is very necessary, particularly in regard to anomalous rotational cues

    Spherical Accretion with Anisotropic Thermal Conduction

    Full text link
    We study the effects of anisotropic thermal conduction on magnetized spherical accretion flows using global axisymmetric MHD simulations. In low collisionality plasmas, the Bondi spherical accretion solution is unstable to the magnetothermal instability (MTI). The MTI grows rapidly at large radii where the inflow is subsonic. For a weak initial field, the MTI saturates by creating a primarily radial magnetic field, i.e., by aligning the field lines with the background temperature gradient. The saturation is quasilinear in the sense that the magnetic field is amplified by a factor of 1030\sim 10-30 independent of the initial field strength (for weak fields). In the saturated state, the conductive heat flux is much larger than the convective heat flux, and is comparable to the field-free (Spitzer) value (since the field lines are largely radial). The MTI by itself does not appreciably change the accretion rate M˙\dot M relative to the Bondi rate M˙B\dot M_B. However, the radial field lines created by the MTI are amplified by flux freezing as the plasma flows in to small radii. Oppositely directed field lines are brought together by the converging inflow, leading to significant resistive heating. When the magnetic energy density is comparable to the gravitational potential energy density, the plasma is heated to roughly the virial temperature; the mean inflow is highly subsonic; most of the energy released by accretion is transported to large radii by thermal conduction; and the accretion rate M˙M˙B\dot M \ll \dot M_B. The predominantly radial magnetic field created by the MTI at large radii in spherical accretion flows may account for the stable Faraday rotation measure towards Sgr A* in the Galactic Center.Comment: accepted in MNRAS with some modifications suggested by the referee; 15 pages, 16 figure
    corecore