823 research outputs found

    Expression and distribution of the glucocorticoid receptor DlGR1 in the teleost Dicentrarchus labrax brain.

    Get PDF
    Cortisol is the main corticosteroid secreted by the interrenal cells of the head kidney and it exerts a role in mantaining the omeostatic status in fish. In teleosts its effects are mediated through intracellular receptors expressed in several tissues, that are ligand-dependent transcription factors by binding to specific tissue DNA sequences. In Dicentrarchus labrax we previously cloned and sequenced a glucocorticoid receptor, DlGR1, isolated from leukocytes of peritoneal cavity. In this work we showed mRNA expression and tissue immunohistochemical localization of brain DlGR1 by in situ hybridization assays, with a riboprobe with DlGR1 cDNA trascriptional activation domain, and by immunohistochemical methods, using a specific antibody for a selected sequence of the receptor tran- scriptional domain. The mRNA and the protein are expressed in pyramidal cells of the optic lobe and in the small globular neurons of the diencephalon

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    An efficient k.p method for calculation of total energy and electronic density of states

    Full text link
    An efficient method for calculating the electronic structure in large systems with a fully converged BZ sampling is presented. The method is based on a k.p-like approximation developed in the framework of the density functional perturbation theory. The reliability and efficiency of the method are demostrated in test calculations on Ar and Si supercells

    Elastic Constants of Quantum Solids by Path Integral Simulations

    Full text link
    Two methods are proposed to evaluate the second-order elastic constants of quantum mechanically treated solids. One method is based on path-integral simulations in the (NVT) ensemble using an estimator for elastic constants. The other method is based on simulations in the (NpT) ensemble exploiting the relationship between strain fluctuations and elastic constants. The strengths and weaknesses of the methods are discussed thoroughly. We show how one can reduce statistical and systematic errors associated with so-called primitive estimators. The methods are then applied to solid argon at atmospheric pressures and solid helium 3 (hcp, fcc, and bcc) under varying pressures. Good agreement with available experimental data on elastic constants is found for helium 3. Predictions are made for the thermal expectation value of the kinetic energy of solid helium 3.Comment: 9 pages doublecolumn, 6 figures, submitted to PR

    Defect-unbinding transitions and inherent structures in two dimensions

    Full text link
    We present a large-scale (36000-particle) computational study of the "inherent structures" (IS) associated with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support both for the inherent-structures theory of classical fluids, and for the KTHNY theory of two-stage melting in two dimensions. This support comes from the observation of three qualitatively distinct "phases" of inherent structures: a crystal, a "hexatic glass", and a "liquid glass". We also directly observe, in the IS, analogs of the two defect-unbinding transitions (respectively, of dislocations, and disclinations) believed to mediate the two equilibrium phase transitions. Each transition shows up in the inherent structures---although the free disclinations in the "liquid glass" are embedded in a percolating network of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same progressive loss of order as do the three equilibrium phases: long-range to quasi-long-range to short-range.Comment: RevTeX, 8 pages, 15 figure

    Gluon Propagator in the Infrared Region

    Get PDF
    The gluon propagator is calculated in quenched QCD for two different lattice sizes (16^3x48 and 32^3x64) at beta=6.0. The volume dependence of the propagator in Landau gauge is studied. The smaller lattice is instrumental in revealing finite volume and anisotropic lattice artefacts. Methods for minimising these artefacts are developed and applied to the larger lattice data. New structure seen in the infrared region survives these conservative cuts to the lattice data. This structure serves to rule out a number of models that have appeared in the literature. A fit to a simple analytical form capturing the momentum dependence of the nonperturbative gluon propagator is also reported.Comment: 13 pages, 9 figures, using RevTeX. Submitted to Phys. Rev. D. This and related papers can also be obtained from http://www.physics.adelaide.edu.au/~jskuller/papers

    Cycloastragenol as an exogenous enhancer of chondrogenic differentiation of human adipose-derived mesenchymal stem cells. A morphological study

    Get PDF
    Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG's ability to promote cell proliferation, maintain cells in their stable active phenotype, and support the production of cartilaginous extracellular matrix (ECM) in human adipose-derived mesenchymal stem cells (hAMSCs) in up to 28 days of three-dimensional (3D) chondrogenic culture. The hAMSC pellets were cultured in chondrogenic medium (CM) and in CM supplemented with CAG (CAG-CM) for 7, 14, 21, and 28 days. At each time-point, the pellets were harvested for histological (hematoxylin and eosin (H&E)), histochemical (Alcian-Blue) and immunohistochemical analysis (Type I, II, and X collagen, aggrecan, SOX9, lubricin). After excluding CAG's cytotoxicity (MTT Assay), improved cell condensation, higher glycosaminoglycans (sGAG) content, and increased cell proliferation have been detected in CAG-CM pellets until 28 days of culture. Overall, CAG improved the chondrogenic differentiation of hAMSCs, maintaining stable the active chondrocyte phenotype in up to 28 days of 3D in vitro chondrogenic culture. It is proposed that CAG might have a beneficial impact on cartilage regeneration approaches

    Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation

    Full text link
    In this paper, we investigate the conformational dynamics of alanine dipeptide under an external electric field by nonequilibrium molecular dynamics simulation. We consider the case of a constant and of an oscillatory field. In this context we propose a procedure to implement the temperature control, which removes the irrelevant thermal effects of the field. For the constant field different time-scales are identified in the conformational, dipole moment, and orientational dynamics. Moreover, we prove that the solvent structure only marginally changes when the external field is switched on. In the case of oscillatory field, the conformational changes are shown to be as strong as in the previous case, and non-trivial nonequilibrium circular paths in the conformation space are revealed by calculating the integrated net probability fluxes.Comment: 23 pages, 12 figure
    • …
    corecore