7,760 research outputs found

    Continuity of the spectra for families of magnetic operators on Z^d

    Full text link
    For families of magnetic self-adjoint operators on Zd{\mathbb Z}^d whose symbols and magnetic fields depend continuously on a parameter ϵ\epsilon, it is shown that the main spectral properties of these operators also vary continuously with respect to ϵ\epsilon. The proof is based on an algebraic setting involving twisted crossed product C*-algebras.Comment: 13 page

    Stable dark and bright soliton Kerr combs can coexist in normal dispersion resonators

    Full text link
    Using the Lugiato-Lefever model, we analyze the effects of third order chromatic dispersion on the existence and stability of dark and bright soliton Kerr frequency combs in the normal dispersion regime. While in the absence of third order dispersion only dark solitons exist over an extended parameter range, we find that third order dispersion allows for stable dark and bright solitons to coexist. Reversibility is broken and the shape of the switching waves connecting the top and bottom homogeneous solutions is modified. Bright solitons come into existence thanks to the generation of oscillations in the switching wave profiles. Finally, oscillatory instabilities of dark solitons are also suppressed in the presence of sufficiently strong third order dispersion

    Visualizing recommendations to support exploration, transparency and controllability

    Get PDF
    Research on recommender systems has traditionally focused on the development of algorithms to improve accuracy of recommendations. So far, little research has been done to enable user interaction with such systems as a basis to support exploration and control by end users. In this paper, we present our research on the use of information visualization techniques to interact with recommender systems. We investigated how information visualization can improve user understanding of the typically black-box rationale behind recommendations in order to increase their perceived relevance and meaning and to support exploration and user involvement in the recommendation process. Our study has been performed using TalkExplorer, an interactive visualization tool developed for attendees of academic conferences. The results of user studies performed at two conferences allowed us to obtain interesting insights to enhance user interfaces that integrate recommendation technology. More specifically, effectiveness and probability of item selection both increase when users are able to explore and interrelate multiple entities - i.e. items bookmarked by users, recommendations and tags. Copyright © 2013 ACM

    Interaction of solitons and the formation of bound states in the generalized Lugiato-Lefever equation

    Full text link
    Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons.Comment: 13 pages, 13 figure

    Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision

    Get PDF
    We describe our work using linear discrimination of multi-channel electroencephalography for single-trial detection of neural signatures of visual recognition events. We demonstrate the approach as a methodology for relating neural variability to response variability, describing studies for response accuracy and response latency during visual target detection. We then show how the approach can be utilized to construct a novel type of brain-computer interface, which we term cortically-coupled computer vision. In this application, a large database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’ improves image search over a strictly behavioral response

    Intrinsic noise and two-dimensional maps: Quasicycles, quasiperiodicity, and chaos

    Full text link
    We develop a formalism to describe the discrete-time dynamics of systems containing an arbitrary number of interacting species. The individual-based model, which forms our starting point, is described by a Markov chain, which in the limit of large system sizes is shown to be very well-approximated by a Fokker-Planck-like equation, or equivalently by a set of stochastic difference equations. This formalism is applied to the specific case of two species: one predator species and its prey species. Quasi-cycles --- stochastic cycles sustained and amplified by the demographic noise --- previously found in continuous-time predator-prey models are shown to exist, and their behavior predicted from a linear noise analysis is shown to be in very good agreement with simulations. The effects of the noise on other attractors in the corresponding deterministic map, such as periodic cycles, quasiperiodicity and chaos, are also investigated.Comment: 21 pages, 12 figure

    Suppressing escape events in maps of the unit interval with demographic noise

    Full text link
    We explore the properties of discrete-time stochastic processes with a bounded state space, whose deterministic limit is given by a map of the unit interval. We find that, in the mesoscopic description of the system, the large jumps between successive iterates of the process can result in probability leaking out of the unit interval, despite the fact that the noise is multiplicative and vanishes at the boundaries. By including higher-order terms in the mesoscopic expansion, we are able to capture the non-Gaussian nature of the noise distribution near the boundaries, but this does not preclude the possibility of a trajectory leaving the interval. We propose a number of prescriptions for treating these escape events, and we compare the results with those obtained for the metastable behavior of the microscopic model, where escape events are not possible. We find that, rather than truncating the noise distribution, censoring this distribution to prevent escape events leads to results which are more consistent with the microscopic model. The addition of higher moments to the noise distribution does not increase the accuracy of the final results, and it can be replaced by the simpler Gaussian noise.Comment: 14 pages, 13 figure
    • …
    corecore