10 research outputs found

    Inter- and intrafraction dose variations in robotic stereotactic body radiation therapy (SBRT) for perihilar cholangiocarcinoma in the prospective phase I STRONG trial

    Get PDF
    Using fiducial-marker-based robotic respiratory tumor tracking, we treated perihilar cholangiocarcinoma patients in the STRONG trial with 15 daily fractions of 4 Gy. For each of the included patients, in-room diagnostic-quality repeat CTs (rCT) were acquired pre- and post-dose delivery in 6 treatment fractions to analyze inter- and intrafraction dose variations. Planning CTs (pCTs) and rCTs were acquired in expiration breath-hold. Analogous to treatment, spine and fiducials were used to register rCTs with pCTs. In each rCT, all OARs were contoured, and the target was rigidly copied from the pCT based on grey values. The rCTs acquired were used to calculate the doses to be delivered through the treatment-unit settings. On average, target doses in rCTs and pCTs were similar. However, due to target displacements relative to the fiducials in rCTs, 10% of the rCTs showed PTV coverage losses of >10%. Although target coverages had been planned below desired values in order to protect OARs, many pre-rCTs contained OAR constraint violations: 44.4% for the 6 major constraints. Most OAR dose differences between pre- and post-rCTs were not statistically significant. The dose deviations observed in repeat CTs represent opportunities for more advanced adaptive approaches to enhancing SBRT treatment quality.</p

    Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci

    Get PDF
    Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link

    Splicing targeting drugs highlight intron retention as an actionable vulnerability in advanced prostate cancer

    No full text
    Abstract Background Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. Method By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. Results Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3’-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. Conclusions Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease

    Functional Interaction Between the Oncogenic Kinase NEK2 and Sam68 Promotes a Splicing Program Involved in Migration and Invasion in Triple-Negative Breast Cancer

    No full text
    Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells

    The Multidisciplinary Approach in Stage III Non-Small Cell Lung Cancer over Ten Years: From Radiation Therapy Optimisation to Innovative Systemic Treatments

    No full text
    Background: About 30% of new non-small cell lung cancer (NSCLC) cases are diagnosed at a locally advanced stage, which includes a highly heterogeneous group of patients with a wide spectrum of treatment options. The management of stage III NSCLC involves a multidisciplinary team, adequate staging, and a careful patient selection for surgery or radiation therapy integrated with systemic treatment. Methods: This is a single-center observational retrospective and prospective study including a consecutive series of stage III NSCLC patients who were referred to the Veneto Institute of Oncology and University Hospital of Padova (Italy) between 2012 and 2021. We described clinico-pathological characteristics, therapeutic pathways, and treatment responses in terms of radiological response in the entire study population and in terms of pathological response in patients who underwent surgery after induction therapy. Furthermore, we analysed survival outcomes in terms of relapse-free survival (RFS) and overall survival (OS). Results: A total of 301 patients were included. The majority of patients received surgical multimodality treatment (n = 223, 74.1%), while the remaining patients (n = 78, 25.9%) underwent definitive CRT followed or not by durvalumab as consolidation therapy. At data cut-off, 188 patients (62.5%) relapsed and the median RFS (mRFS) of the entire population was 18.2 months (95% CI: 15.83&ndash;20.57). At the time of analyses 140 patients (46.5%) were alive and the median OS (mOS) was 44.7 months (95% CI: 38.4&ndash;51.0). A statistically significant difference both in mRFS (p = 0.002) and in mOS (p &lt; 0.001) was observed according to the therapeutic pathway in the entire population, and selecting patients treated after 2018, a significant difference in mRFS (p = 0.006) and mOS (p &lt; 0.001) was observed according to treatment modality. Furthermore, considering only patients diagnosed with stage IIIB-C (N = 131, 43.5%), there were significant differences both in mRFS (p = 0.047) and in mOS (p = 0.022) as per the treatment algorithm. The mRFS of the unresectable population was 16.3 months (95% CI: 11.48&ndash;21.12), with a significant difference among subgroups (p = 0.030) in favour of patients who underwent the PACIFIC-regimen; while the mOS was 46.5 months (95% CI: 26.46&ndash;66.65), with a significant difference between two subgroups (p = 0.003) in favour of consolidation immunotherapy. Conclusions: Our work provides insights into the management and the survival outcomes of stage III NSCLC over about 10 years. We found that the choice of radical treatment impacts on outcome, thus suggesting the importance of appropriate staging at diagnosis, patient selection, and of the multidisciplinary approach in the decision-making process. Our results confirmed that the PACIFIC trial and the following introduction of durvalumab as consolidation treatment may be considered as a turning point for several improvements in the diagnostic-therapeutic pathway of stage III NSCLC patients

    Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer

    No full text
    The purpose of this multi-centric work was to investigate the relationship between radiomic features extracted from pre-treatment computed tomography (CT), positron emission tomography (PET) imaging, and clinical outcomes for stereotactic body radiation therapy (SBRT) in early-stage non-small cell lung cancer (NSCLC). One-hundred and seventeen patients who received SBRT for early-stage NSCLC were retrospectively identified from seven Italian centers. The tumor was identified on pre-treatment free-breathing CT and PET images, from which we extracted 3004 quantitative radiomic features. The primary outcome was 24-month progression-free-survival (PFS) based on cancer recurrence (local/non-local) following SBRT. A harmonization technique was proposed for CT features considering lesion and contralateral healthy lung tissues using the LASSO algorithm as a feature selector. Models with harmonized CT features (B models) demonstrated better performances compared to the ones using only original CT features (C models). A linear support vector machine (SVM) with harmonized CT and PET features (A1 model) showed an area under the curve (AUC) of 0.77 (0.63–0.85) for predicting the primary outcome in an external validation cohort. The addition of clinical features did not enhance the model performance. This study provided the basis for validating our novel CT data harmonization strategy, involving delta radiomics. The harmonized radiomic models demonstrated the capability to properly predict patient prognosis
    corecore