49 research outputs found

    Extramitochondrial porin: Facts and hypotheses

    Get PDF
    Mitochondrial porin, or VDAC, is a pore-forming protein abundant in the outer mitochondrial membrane. Several publications have reported extramitochondrial localizations as well, but the evidence was considered insufficient by many, and the presence of porin in nonmitochondrial cellular compartments has remained in doubt for a long time. We have now obtained new data indicating that the plasma membrane of hematopoietic cells contains porin, probably located mostly in caveolae or caveolae-like domains. Porin was purified from the plasma membrane of intact cells by a procedure utilizing the membrane-impermeable labeling reagent NH-SS-biotin and streptavidin affinity chromatography, and shown to have the same properties as mitochondrial porin. A channel with properties similar to that of isolated VDAC was observed by patch-clamping intact cells. This review discusses the evidence supporting extramitochondrial localization, the putative identification of the plasma membrane porin with the 'maxi' chloride channel, the hypothetical mechanisms of sorting porin to various cellular membrane structures, and its possible functions

    Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma Membrane RETENTION OF CAVEOLIN-2 AT THE LEVEL OF THE GOLGI COMPLEX

    Get PDF
    Caveolins-1 and -2 are normally co-expressed, and they form a hetero-oligomeric complex in many cell types. These caveolin hetero-oligomers are thought to represent the assembly units that drive caveolae formation in vivo. However, the functional significance of the interaction between caveolins-1 and -2 remains unknown. Here, we show that caveolin-1 co-expression is required for the transport of caveolin-2 from the Golgi complex to the plasma membrane. We identified a human erythroleukemic cell line, K562, that expresses caveolin-2 but fails to express detectable levels of caveolin-1. This allowed us to stringently assess the effects of recombinant caveolin-1 expression on the behavior of endogenous caveolin-2. We show that expression of caveolin-1 in K562 cells is sufficient to reconstitute the de novo formation of caveolae in these cells. In addition, recombinant expression of caveolin-1 allows caveolin-2 to form high molecular mass oligomers that are targeted to caveolae-enriched membrane fractions. In striking contrast, in the absence of caveolin-1 expression, caveolin-2 forms low molecular mass oligomers that are retained at the level of the Golgi complex. Interestingly, we also show that expression of caveolin-1 in K562 cells dramatically up-regulates the expression of endogenous caveolin-2. Northern blot analysis reveals that caveolin-2 mRNA levels remain constant under these conditions, suggesting that the expression of caveolin-1 stabilizes the caveolin-2 protein. Conversely, transient expression of caveolin-2 in CHO cells is sufficient to up-regulate endogenous caveolin-1 expression. Thus, the formation of a hetero-oligomeric complex between caveolins-1 and -2 stabilizes the caveolin-2 protein product and allows caveolin-2 to be transported from the Golgi complex to the plasma membrane

    A retrospective case series of ultrasound-guided suprascapular nerve pulsed radiofrequency treatment for hemiplegic shoulder pain in patients with chronic stroke

    Get PDF
    Purpose: Hemiplegic shoulder pain (HSP) is the most common pain condition after stroke. Pulsed radiofrequency (PRF) treatment of the suprascapular nerve (SSN) effectively relieves shoulder pain conditions. To date, there is no study about the effects of PRF treatment for HSP. Thus, our aim was to report on a case series about its use in chronic stroke. Patients and methods: Six chronic stroke patients with HSP (visual analog scale [VAS] score for pain 6530 mm) underwent ultrasound-guided SSN PRF treatment. All were evaluated before treatment and at 4 and 16 weeks of follow-up. The main outcome was VAS score. Secondary outcomes were Modified Ashworth Scale, shoulder passive range of motion (PROM), Disability Assessment Scale (DAS), Fugl-Meyer Assessment, and EuroQol-5 dimension questionnaire (EuroQol-5D) scores. Results: As compared with baseline, improvement was observed in the following parameters: VAS for pain (at 4 weeks, P=0.023; at 16 weeks, P=0.023); shoulder PROM for abduction (at 4 weeks, P=0.023; at 16 weeks, P=0.024), flexion (at 4 and 16 weeks, P=0.024), extension (at 4 and 16 weeks, P=0.02), and external rotation (4 and 16 weeks, P=0.02); DAS for hygiene (at 4 and 16 weeks, P=0.024), dressing (at 4 weeks, P=0.02; at 16 weeks, P=0.024), and pain (at 4 weeks, P=0.024; at 16 weeks, P=0.023); and EuroQol-5D (at 4 and 16 weeks, P=0.024). Conclusion: Our observations support the use of ultrasound-guided SSN PRF treatment for HSP in chronic stroke patients

    CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells

    Get PDF
    We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and showed a substantial correlation with the kinetics of Fas-associated death domain (FADD) and caspase-8 recruitment to lipid rafts. Finally, electron microscopy analysis showed that after CD95 stimulation lipid rafts aggregated in large clusters that were internalized in endosomal vesicles, where caspase-8 underwent massive processing. Taken together, our data demonstrate that CD95 death-inducing signaling complex formation and internalization in type I and type II cells occur in lipid rafts, which are a major site of caspase-8 activation. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naĂŻve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    Generation, quantification, and tracing of metabolically labeled fluorescent exosomes

    No full text
    Over the last 10 years, the constant progression in exosome (Exo)-related studies highlighted the importance of these cell-derived nano-sized vesicles in cell biology and pathophysiology. Functional studies on Exo uptake and intracellular trafficking require accurate quantification to assess sufficient and/or necessary Exo particles quantum able to elicit measurable effects on target cells. We used commercially available BODIPY® fatty acid analogues to label a primary melanoma cell line (Me501) that highly and spontaneously secrete nanovesicles. Upon addition to cell culture, BODIPY fatty acids are rapidly incorporated into major phospholipid classes ultimately producing fluorescent Exo as direct result of biogenesis. Our metabolic labeling protocol produced bright fluorescent Exo that can be examined and quantified with conventional non-customized flow cytometry (FC) instruments by exploiting their fluorescent emission rather than light-scattering detection. Furthermore, our methodology permits the measurement of single Exo-associated fluorescence transfer to cells making quantitative the correlation between Exo uptake and activation of cellular processes. Thus the protocol presented here appears as an appropriate tool to who wants to investigate mechanisms of Exo functions in that it allows for direct and rapid characterization and quantification of fluorescent Exo number, intensity, size, and eventually evaluation of their kinetic of uptake/secretion in target cells
    corecore