13 research outputs found

    Configuration efficiency for deuteron breakup reaction investigation

    Get PDF
    The elastic scattering and deuteron breakup data were collected in the experiment performed at KVI with the use of unpolarized deuteron beam of 80 MeV per nucleon, impinging on hydrogen target. The aim of the analysis is to obtain absolute values of the differential cross section for deuteron breakup reaction. Precise determination of the detection efficiency is indispensable for that purpose. This report explains the efficiency correction introduced to account for the detector granulation and geometry

    Experimental studies of the Coulomb force effects in deuteron-proton break-up reaction at medium energy regime

    Get PDF
    A set of differential cross-section data of the ^{1}H(d, pp)n breakup reaction at 130 and 160 MeV deuteron beam energies has been measured in the forward polar angles domain. The data were collected with the use of the Germanium Wall (FZ Jülich) and BINA (KVI Groningen) detectors. This part of the phase-space is special with respect to the dominant Coulomb force influence on the system dynamics. The data are compared with the theoretical calculations based on the Argonne V18 potential supplemented with the long-range electromagnetic component. The predictions also include the Urbana IX three nucleon force model. The strongest Coulomb effects are found in regions where the relative energy of the two protons is the smallest

    Experimental investigation of the few-nucleon dynamics in deuteron-deuteron collision at 160 MeV

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid deuterium target, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. We present here a sample of the un-normalised cross-section for the three-body final state (dddpn)\left ( dd\rightarrow dpn \right ) reaction

    Three- and four-nucleon dynamics at intermediate energies

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross sections of break-up channels in dp and dd collisions. The elastic scattering data were also collected alongside for the purpose of cross-section normalization. A brief description of the experiment and the data analysis as well as some preliminary results are presented

    Experimental investigation of few-nucleon dynamics at medium energies

    Get PDF
    An experiment, with unpolarized deuteron beam of 160 MeV impinging on liquid hydrogen and liquid deuterium targets, was carried out using BINA detector at KVI, in Groningen, the Netherlands. Data were collected for the purpose of obtaining high precision differential cross-section for the deuteron break-up reaction. The elastic scattering data were also collected alongside. We present here the methods applied in analysis of data collected in the backward part of the detector

    Few-nucleon system dynamics studied via deuteron-deuteron collisions at 160 MeV

    Get PDF
    Four nucleon scattering at intermediate energies provides unique opportunities to study effects of the two key ingredients of the nuclear dynamics, the nucleon-nucleon P-wave (NNP-wave) and the three-nucleon force (3NF). This is possible only with systematic and precise data, in conjunction with exact theoretical calculations. Using the BINA detector at KVI Groningen, the Netherlands, a rich set of differential cross section of the 2H(d, dp)n breakup reaction at 160 MeV deuteron beam energy has been measured. Besides the three-body breakup, also cross sections of the 2H(d, 3He)n proton transfer reaction have been obtained. The data are compared to the recent calculations for the three-cluster breakup

    Studies of the three-nucleon system dynamics in the deuteron-proton breakup reaction

    Get PDF
    One of the most important goals of modern nuclear physics is to contruct nuclear force model which properly describes the experimental data. To develop and test predictions of current models the breakup 1H(d,pp)n^{1}H\left ( \vec{d}, pp \right )n reaction was investigated experimentally at 100 and 130 MeV deuteron beam energies. Rich set of data for cross section, vector and tensor analyzing powers was obtained with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which describe the three-nucleon (3N) system dynamics. For correct description of the cross section data both, three-nucleon force (3NF) and Coulomb force, have to be included into calculations and influence of those ingredients is seizable at specific parts of the phase space. In case of the vector analyzing powers very low sensitivity to any effects beyond nucleon-nucleon interaction was found. At 130 MeV, the AxyA_{xy} data are not correctly described when 3NF models are included into calculations

    4-nucleon system dynamics in proton helium-3 scattering

    No full text
    We propose kinematically complete measurement of the differential cross section and analyzing power in proton polarized helium-3 elastic scattering and breakup. The proposed method, involving tracking of charged reaction products and subsequent reconstruction of the reaction vertex, should be regarded as a novel experimental approach in this low energy nuclear physics experiment. The details of the proposed experimental setup and prospects of the first measurement at the new Cyclotron Center Bronowice in Kraków are also given
    corecore