1,205 research outputs found

    Compression properties of polymeric syntactic foam composites under cyclic loading

    Full text link
    Syntactic foams are composite materials frequently used in applications requiring the properties of low density and high damage tolerance. In the present work, polymer-based syntactic foams were studied under cyclic compression in order to investigate their compressibility, recoverability, energy dissipation and damage tolerance. These syntactic foams were manufactured by adding hollow polymer microspheres of various sizes and wall thicknesses into a polyurethane matrix. The associated loading and unloading curves during cyclic testing were recorded, revealing the viscoelastic nature of the materials. SEM images of the samples were obtained in order to study potential damage mechanisms during compression. It was observed that these syntactic foams exhibit high elastic recovery and energy dissipation over a wide range of compressional strains and the addition of polymer microspheres mitigate the damage under compressional loading.Comment: 25 pages, 13 figure

    A measurement of the cosmic ray elements C to Fe in the two energy intervals 0.5-2.0 GeV/n and 20-60 GeV/n

    Get PDF
    The study of the cosmic ray abundances beyond 20 GeV/n provides additional information on the propagation and containment of the cosmic rays in the galaxy. Since the average amount of interstellar material traversed by cosmic rays decreases as its energy increases, the source composition undergoes less distortion in this higher energy region. However, data over a wide energy range is necessary to study propagation parameters. Some measurements of some of the primary cosmic ray abundance ratios at both low (near 2 GeV/n) and high (above 20 GeV/n) energy are given and compared to the predictions of the leaky box mode. In particular, the integrated values (above 23.7 GeV/n) for the more abundant cosmic ray elements in the interval C through Fe and the differential flux for carbon, oxygen, and the Ne, Mg, Si group are presented. Limited statistics prevented the inclusion of the odd Z elements

    Prediction of LDEF ionizing radiation environment

    Get PDF
    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements

    Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer

    Get PDF
    Magnetic neutral points, where the magnitude of the magnetic field vanishes locally, are potential locations for energy conversion in the solar corona. The fact that the magnetic field is identically zero at these points suggests that for the study of current sheet formation and of any subsequent resistive dissipation phase, a finite beta plasma should be considered, rather than neglecting the plasma pressure as has often been the case in the past. The rapid dissipation of a finite current layer in non-force-free equilibrium is investigated numerically, after the sudden onset of an anomalous resistivity. The aim of this study is to determine how the energy is redistributed during the initial diffusion phase, and what is the nature of the outward transmission of information and energy. The resistivity rapidly diffuses the current at the null point. The presence of a plasma pressure allows the vast majority of the free energy to be transferred into internal energy. Most of the converted energy is used in direct heating of the surrounding plasma, and only about 3% is converted into kinetic energy, causing a perturbation in the magnetic field and the plasma which propagates away from the null at the local fast magnetoacoustic speed. The propagating pulses show a complex structure due to the highly non-uniform initial state. It is shown that this perturbation carries no net current as it propagates away from the null. The fact that, under the assumptions taken in this paper, most of the magnetic energy released in the reconnection converts internal energy of the plasma, may be highly important for the chromospheric and coronal heating problem

    Radiation exposure of LDEF: Initial results

    Get PDF
    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Charged particle LET-spectra measurements aboard LDEF

    Get PDF
    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

    Optimal design of phononic media through genetic algorithm-informed pre-stress for the control of antiplane wave propagation

    Get PDF
    In this paper we employ genetic algorithms in order to theoretically design a range of phononic media that can act to prevent or ensure antiplane elastic wave propagation over a specific range of low frequencies, with each case corresponding to a specific pre-stress level. The medium described consists of an array of cylindrical annuli embedded inside an elastic matrix. The annuli are considered as capable of large strain and their constitutive response is described by the popular Mooney–Rivlin strain energy function. The simple nature of the medium described is an alternative approach to topology optimization in phononic media, which although useful, often gives rise to complex phase distributions inside a composite material, leading to more complicated manufacturing requirements

    Gamma-ray burst spectroscopy capabilities of the BATSE/GRO experiment

    Get PDF
    A scintillation spectrometer is included in each of the eight BATSE/GRO detector modules, resulting in all-sky coverage for gamma-ray bursts. The scientific motivation, design and capabilities of these spectrometers for performing spectral observations over a wide range of gamma-ray energies and burst intensities are described
    • …
    corecore