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a b s t r a c t

In this paper we employ genetic algorithms in order to theoretically design a range of phononic media
that can act to prevent or ensure antiplane elastic wave propagation over a specific range of low
frequencies, with each case corresponding to a specific pre-stress level. The medium described consists
of an array of cylindrical annuli embedded inside an elastic matrix. The annuli are considered as
capable of large strain and their constitutive response is described by the popular Mooney–Rivlin strain
energy function. The simple nature of the medium described is an alternative approach to topology
optimization in phononic media, which although useful, often gives rise to complex phase distributions
inside a composite material, leading to more complicated manufacturing requirements.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Phononic crystals (PCs) represent an important class of ma-
terials that can be employed in various applications pertaining
to the control of the propagation of sound and vibration [1,2]. In
particular the choice of microstructural lengthscales, distribution
of microstructure and periodicity of the medium in question,
coupled with the choice of materials employed allows one to
carefully control the pass bands and band gaps of the material,
with the latter corresponding to ranges of frequency where waves
cannot propagate in the medium. Since the pioneering work that
showed that the same analysis for photonics applies to phonon-
ics [3,4] there has been a huge range of research investigating the
properties of PCs [5].

Since the early 2000s a significant branch of the field has
focussed on the optimal design of PCs, often via a multi-objective
approach. One mechanism for this is to employ classical opti-
mization techniques, which appear to have been first used to
maximize band-gap widths in [6]. This work employed classical
finite element computations for cell problems, combined with
the method of moving asymptotes. Approaches that employed
genetic algorithms first arose in 2006 and 2007 [7–9]. Genetic
algorithms (GAs) are metaheuristic, nature-inspired optimization
methods that mimic the natural evolution of species working on
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a population of candidate solutions that evolves through a pre-
defined number of generations. They are robust (guarantee con-
vergence), general (can be applied to any type of problems and
without any restrictions on the form of objective and constraint
functions), easy to use and implicitly parallel (they can handle
multi-objective optimization problems). On the other hand, their
accuracy increases with the size of the population and the num-
ber of generations. Therefore, they require a larger computational
time with respect to classical methods, particularly when the
number of design parameters and optimization goals is very high.
Given their benefits however they are one of the most widely
used optimization tools in engineering design problems [10].

Moving on then to the use of GAs in PC design, in [7] GA
optimization was considered in the case of acoustics for two-
dimensional PCs. Finite element methods were coupled with GAs
for two phase materials. Layered materials were considered in [8]
and antiplane waves in fibrous materials in [9]. In all of these
works, the material properties of both phases are fixed prior to
optimization. Layered photonic structures were optimized by the
use of GAs in [11]. In [12,13] GAs were employed to maximize the
width of elastic band-gaps for two-dimensional PCs associated
with either in-plane waves or antiplane waves and also to control
both wave types. In particular [13] employed voided materials,
with the follow up study in [14] describing a multi-objective
method that optimized band-gap width whilst minimizing mass.
Alternative computational approaches are described in the more
recent optimization studies of [15–18] with the latter considering
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thin-walled structures, of potential use in low-loss ultrasound
devices. Optimizing three-phase PCs using GAs was the focus of
the study in [19]. More broadly, genetic algorithms and general
optimization techniques have become popular in the context of
wave propagation and metamaterials in recent years see e.g.
[20–22].

PC materials designed using the above techniques are optimal
but have the disadvantage that once designed their properties are
fixed. The notion of reconfigurable or tunable PCs and metamate-
rials has therefore evolved as a separate research field in recent
years [23]. The first work in this field noted that the band gaps of
PCs could be modified by elastic pre-stress [24–26] and since then
a plethora of mechanisms have been shown to affect band-gap
location and width [27–34]. It has also been shown that, perhaps
surprisingly, some materials can be designed whose band gaps
are invariant to deformation [35,36]. Furthermore, recently work
has emerged that exploits pre-stress in order to design one-way
wave propagation devices [37,38].

The motivation for the present work is to design optimal
materials for the control of antiplane waves via the choice of
pre-stress mechanisms. Very little research has been carried out
to optimize band gaps in the presence of pre-stress, using GAs.
An important exception is the work carried out in [39] which
considers the optimization of antiplane wave band gaps via GAs
in a dielectric elastomer at fixed imposed voltage via the unit cell
topology (phase distribution). The aim in the present paper is to
employ a relatively ‘‘simple’’ structure without the need to design
and manufacture complex phase topology. We then use pre-stress
to both open up wide low frequency band-gaps at specific pre-
stress levels and at other pre-stress levels to close these gaps
entirely so that a complete pass band material results. Such a
material therefore has the potential to act as a filter. For reasons
of stability, the fibrous material described is discussed in the con-
text when the fibres are stretched axially (λ > 1, where λ is the
principal axial stretch). The analysis could certainly be repeated
considering λ < 1, but in this case the algorithm would have
to take into account the fact that at critical loads/stretches the
cylinder will buckle [40,41]. This would change completely the
periodic structure although such snap-through bifurcations have
been employed in order to switch wave propagation mechanisms
entirely [42]. The method introduced here, associated with the
stretch of periodically distributed cylindrical annuli embedded in
a matrix material, is described in the context of antiplane shear
waves but it can also be deployed to optimize more complex
in-plane elastic wave propagation [32].

1. Antiplane waves in pre-stressed phononic media

We follow the notation in [35] and consider the propagation
of linear elastic antiplane waves, polarized in the Z direction
and propagating in the XY plane. It will be convenient to for-
mulate the problem in circular cylindrical polar coordinates and
therefore defining these via X = R cosΘ, Y = R sinΘ , and
assuming that the wave (displacement w in the Z direction)
takes the time-harmonic form ℜ[w(X, Y )e−iωt

], where ω is the
circular frequency, w is then governed by the harmonic wave
equation [35,43]

1
R

∂

∂R

(
R
∂w

∂R

)
+

1
R2

∂2w

∂Θ2 +
ρ

µ
ω2w = 0 (1)

in an unstressed configuration where ρ is the mass density and
µ is the linear infinitesimal shear modulus of the medium.

We now consider antiplane waves propagating in the medium
as depicted in the upper part of Fig. 1. This medium consists of a
homogeneous material having mass density ρ0 and shear modu-
lus µ0 having a square periodic array (of period ℓ) of cylindrical

Fig. 1. Figure illustrating the geometry and the material properties of the
periodic structure with no pre-stress (equivalently λ = 1, where λ is the
axial pre-stretch in each cylindrical annulus) which for the same material and
geometric properties can become a stop-band device (λ = λ1) and pass band
device (λ = λ2) at appropriately chosen stretches.

voids, each of radius R1 distributed inside the material. These
voids are each filled with a cylindrical annulus of a nonlinearly
elastic incompressible medium having initial outer radius R1 and
inner radius R0. Given its nonlinear nature this annulus can be
deformed both axially and radially, being subject to large de-
formation as shown in the following paragraphs, but we always
require that its outer radius remains as r1 = R1 when waves
propagate through the medium. Under this deformation the inner
radius becomes r0. The annulus has linear elastic shear modulus
µ1 < µ0 and mass density ρ1 < ρ0. In the undeformed
configuration each cylinder therefore resides in the domain R0 ≤

R ≤ R1, and Θ in [0, 2π ) (where these coordinates are prescribed
locally in each cell). The initial deformation of the cylindrical
annulus is prescribed by imposing an external pressure p0 on
the inner surface R = R0 or equivalently by imposing an axial
stretch λ along the Z direction. The deformation that ensures this
pre-deformation in the case of incompressible materials is given
by [44,45]

R(r) =

√
λ(r2 + M), Θ = θ, Z =

1
λ
z (2)

where (r, θ, z) are cylindrical coordinates in the deformed con-
figuration, and M =

( 1
λ

− 1
)
R2
1. The form of the function R(r)

is determined by imposing the constraint of incompressibility
λrλθλz = 1. We also have the additional constraints

R0 = R(r0), R1 = R(r1) = r1. (3)

The principal stretches in the direction r, θ and z are λr =

1/R′(r), λθ = r/R(r) and λz = λ respectively. Moreover the single
nontrivial balance equation allows the determination of the radial
component of the Cauchy stress as

Trr = −p0 +

∫ r

r0

1
s

(
λθ (s)

∂W
∂λθ

− λr (s)
∂W
∂λr

)
ds, (4)

where W = W(λr , λθ , λz) is the strain energy function that
describes the constitutive behaviour of the nonlinearly elastic
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annulus and Trr (r0) = −p0 and Trr (r1) = 0 [46]. Expression (4) is
deduced from the radial equilibrium equation by expressing all
relations for stress in terms of the strain energy function except
for the term dTrr/dr . Integration between r0 and some point r ∈

[r0, r1] yields this expression.
At this point it is worth noting that these annuli deform whilst

embedded inside an elastic matrix which does not undergo any
pre-stress. That this is possible is due to the fact that the exterior
radius of the cylinders in question remain fixed as described
above. On a practical level we anticipate that the annuli and
matrix are not bonded but are instead in close contact. When pre-
stressing the annuli, pressure can be evacuated from the interior
region, decreasing the exterior radius, an axial stretch imposed
and then the core is re-pressurized to ensure contact with the
matrix domain once again. This may mean a small region of pre-
stress in the matrix close to the contact at R1 but its stiffer nature
(µ1 < µ0) will ensure that this region is limited.

The equation governing the propagation of small amplitude
antiplane waves propagating through the medium just described
consisting of an unstressed host medium and periodically spaced
pre-stressed cylindrical annuli, as depicted in Fig. 1, can be shown
to be [47,46,35]

1
r

∂

∂r

(
rµr (r)

∂w

∂r

)
+

µθ (r)
r2

∂2w

∂θ2 + ρω2w = 0, (5)

where

ρ =

{
ρair r < r0
ρ1 r0 ≤ r ≤ r1
ρ0 r > r1

(6)

is the mass density of the medium (the annulus density is un-
affected by the pre-deformation given that the material is in-
compressible) and where the incremental shear modulus in the
annulus region is

µr (r) =

(
λrWr − λzWz

λ2
r − λ2

z

)
λ2
r , (7)

µθ (r) =

(
λθWθ − λzWz

λ2
θ − λ2

z

)
λ2

θ (8)

where Wr ,Wθ and Wz denote ∂W/∂λr , ∂W/∂λθ and ∂W/∂λz
respectively. For ease of reference, note in particular that the form
of the incremental equation and moduli for the antiplane problem
is given in Appendix A of [47]. In the case of no deformation
λ = 1, the incremental moduli each reduce to the constant µr =

µθ = µ1. In the interior of the annulus (r < r0) µr = µθ = µair
and in the host (r > r1 with r inside the periodic square cell)
µr = µθ = µ0.

One of the most popular strain energy functions used to
describe incompressible hyperelastic materials is the Mooney–
Rivlin model [48]

Wmr =
µ

2

[
S1

(
λ2
r + λ2

θ + λ2
z − 3

)
+ (1 − S1)

(
λ2
r λ

2
θ + λ2

r λ
2
z + λ2

θλ
2
z − 3

)]
(9)

where 0 < S1 ≤ 1 is a constant. Typically in ‘‘real’’ materials
S1 ∈ [0.6, 1] (e.g [49,50]) and when S1 = 1 the model reduces to
the classical neo-Hookean model [51]

Wnh =
µ

2

(
λ2
r + λ2

θ + λ2
z − 3

)
. (10)

For the Mooney–Rivlin model, the incremental moduli reduce to
the forms

µMR
r (r) = µ1

R2S1 − r2(S1 − 1)
λ2r2

, (11)

µMR
θ (r) = µ1

(
r2S1
R2 +

1 − S1
λ2

)
, (12)

where R = R(r) is given in (2).

2. Plane wave expansion

We seek solutions to (5) in the periodic medium via the Plane
Wave Expansion (PWE) method, which as reported in [35] allows
the straightforward determination of the band-gap spectrum via
the numerical solution of the eigenvalue problem. This eigenvalue
problem results from the PWE scheme via a representation of
the displacement as a sum of plane waves modulated by a Bloch
phase term in order to ensure quasi-periodicity of the propagat-
ing wave. The complex displacement w is written in the form

w(x) = eiK·x
∑
G

W (G)eiG·x (13)

where K is the Bloch wavevector, G are the reciprocal lattice
vectors G = 2π/ℓ(mex + ney), with m, n integers and ex, ey unit
vectors and W (G) are the Fourier coefficients of the displacement.
It is most convenient to express Eq. (5) in Cartesian coordinates
for the purposes of the computations [35].

The frequencies ω can be obtained from the generalized eigen-
value problem which will give the full dispersion relation asso-
ciated with the medium, referring the reader to [2] for general
details and to [35] where a description of the specific problem
above is provided. The frequency of the jth mode is denoted by
ωj which is ordered with respect to increasing j, i.e. ωj < ωj+1, j =

1, 2, . . .. We scan the wavenumber around the edge of the ir-
reducible Brillouin zone (see Fig. 2) with the three boundaries
denoted by K = (0i + 0j)/ℓ → Γ , K = (0.5i + 0j)/ℓ → X
and K = (0.5i + 0.5j)/ℓ → M . For further details as to how
this method is employed for pre-stressed configurations we refer
the reader to [35] and for more general details about the method
to [2].

Our interest here is to employ GAs in order to find optimal
structures in specific pre-stressed states and in particular which
pre-stretch, say λ = λ1, provides the widest band gap in a given
frequency range say ω ∈ Ω1 ⊂ Ω , where Ω contains the first
three modes. Additionally, this same structure should have no
band gaps in Ω1 at an alternative stretch λ = λ2.

3. Optimization function for the genetic algorithm

Scanning for K ∈ [M − Γ − X − M] and considering the
analysis for the first three dispersion curves, the goal of the
single-objective optimization is to find optimal values for the
parameter set P = {R0, µ1, ρ1, S1} from the set of possible
choices, i.e.

A = {R0 ∈ (0, R1), µ1 ∈ µ0[10−3, 1],
ρ1 ∈ ρ0[10−3, 1], S1 ∈ [0.6, 1]} (14)

noting that we have chosen annuli that are softer than the matrix,
consistent with the assumption that the annuli are nonlinear
and capable of large deformation, whereas the matrix is a stiffer
medium hosting these annuli. These parameters are then chosen
to optimize the phononic material under study by satisfying the
following objective

O : max
A,λ1,j=1,2

Φ, (15)

where

Φ = 2
minK ω2

j+1(K) − maxK ω2
j (K)

minK ω2
j+1(K) + maxK ω2

j (K)
(16)
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Fig. 2. The irreducible Brillouin zone of the cell is emphasized in red. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

is the objective function given and employed in the pioneering
work [6]. In (16) minK ω2

j (K) and maxK ω2
j (K) denote the mini-

mum and the maximum, respectively, of the square of the jth
frequency ω2

j over the entire discrete K spanning the border of
the triangle Γ XM representing the irreducible Brillouin zone (see
Fig. 2). This optimization is therefore set up to try to maximize the
relative band-gap size between the jth and (j + 1)th dispersion
curves by maximizing the lowest frequency of the overlying
bands and minimizing the highest frequency of the underlying
bands. The particular band gap width is normalized with respect
to its mid frequency.

Note that a band gap exists only when the minimum of the
(j + 1)th eigenfrequency is greater than the maximum of the jth
eigenfrequency. If this does not occur for a specific configuration,
Φ is set to zero. Furthermore, we subject the solutions of the
optimization in (15) to two further constraints:

C1 : max
P,λ2,j=1,2

Φ = 0, (17)

C2 : max
P,λ2

ω3 ≥ min
P,λ1

ωj̄+1 (18)

with j̄ = j as chosen in the optimization (15). The two conditions
C1,2 ensure that for the stretch λ = λ2, waves will always
propagate in the frequency range ω ∈ Ω1, noting that Ω1 is the
range of frequencies which contains the widest possible band gap
at stretch λ = λ1.

The flow chart of the optimization process is shown in Fig. 3.
The GA used in this work is the NSGA-II (non dominated sorting
genetic algorithm) implemented in the Esteco-Modefrontier opti-
mization software. The algorithm starts with an initial population
of 200 individuals obtained with a Sobol design of experiments
after selecting, for each variable, the range and the step of varia-
tion shown in Table 1. The maximum number of generations was
set equal to 200 while the crossover and mutation probability
were 0.5 and 0.02, respectively. The elitism operator allowed
the best individual of each generation to be copied in the next
generation without modifications [52,53].

4. Results

Results are presented in nondimensional form by introduc-
ing the following scaled variables, non-dimensionalized on the

Table 1
Parameters ranges and respective step of variation.
var min max step

R̂0 0.01 0.44 0.01
log µ̂1 −3 0 0.01
log ρ̂1 −3 0 0.01
λ1 1 7 0.1
λ2 1 7 0.1
S1(MR) 0.6 1 0.01
S1(NH) 1 1 –

Table 2
Convergence values where ‘ng’ stays for the generation at which optimum has
been detected, ‘nc’ number of analysed candidates (net of repeated designs) and
‘ncf’ the number of feasible designs among ‘nc’.
model ng nc ncf

NH 144 5247 1923
MR 90 5138 3469

properties of the matrix material

µ̂1 =
µ1

µ0
, µ̂air =

µair

µ0
, (19)

ρ̂1 =
ρ1

ρ0
, ρ̂air =

ρair

ρ0
(20)

and furthermore

K̂ = ℓK, R̂ =
R
ℓ
, r̂ =

r
ℓ
, ω̂ =

ℓω

c0
(21)

where c0 =
√

µ0/ρ0 is the shear wave speed in the host material
and where we fix R̂1 = R1/ℓ = 0.45. Since the associated material
parameters for the air region inside the deformable cylindrical
annuli are negligible with respect to the matrix parameters, we
set them to be µ̂air = ρ̂air = 10−8. We also checked that the
routine is stable for choices smaller than this. As noted above we
anticipate that the annulus material will be softer than the matrix
and hence the choice of relative shear moduli.

Details of the PWE numerical scheme procedure which is now
implemented within the context of the GA are provided in [35].
Parameters in P and the stretches λ1, λ2 are varied in the ranges
and with increments according to Table 1. Moreover, here, given
that the parameter ranges are wider than that studied in [35],
in order to ensure numerical stability and robust optimization,
we increased the maximum plane wave number to N = 15
(corresponding to 961 plane waves). This is an increase from the
choice N = 10 (corresponding to 441 plane waves) which was
quoted in [35] as a limit that ensured sufficiently accurate results.

We run the GA separately for the Neo-Hookean (NH) model
(S1 = 1) and for the Mooney–Rivlin material (MR) case with
S1 ∈ [0.6, 1] so that in the latter the parameter S1 serves as an
additional optimization mechanism. The algorithm chooses λ1 to
maximize Φ and (for the same material constants) λ2 to satisfy
the constraints C1, C2 in (17)–(18).

As explained above, 200 generations for each model were
performed by the NSGA-II algorithm with a population of 200
individuals. Therefore, the total number of designs to be analysed
by the method was nominally 40,000. We summarize the conver-
gence towards the maximum value of the optimization function
for both the NH and MR models in Table 2.
We can therefore conclude that the algorithm was efficient in this
application and in fact it required a very low number of evalua-
tions with respect to the total number of possible combinations
of the input parameters and reached convergence long before the
pre-fixed number of generations.
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Fig. 3. Flow chart of the Genetic Algorithm optimization process.

The process above provides a rich set of data from which
to design potentially interesting phononic media. Such potential
solutions are defined as feasible in the sense that for the material
parameters in question both constraints C1 and C2 are satisfied.
This ensures that such a material with parameters P can act as
a tunable wave filter by imposing only pre-stress in the annulus
regions. These feasible solutions, illustrated as filled, coloured cir-
cles in Figs. 4, 5 are distinguished from the open circle unfeasible
solutions covering the rest of the parameter space of interest,
which initiate the algorithm. The colours of the filled circles, as
illustrated in the colour bar, express the corresponding Φ ∈ [0, 1]
associated with the choice of λ1.

The results obtained illustrate that for both neo-Hookean
(Fig. 4) and Mooney–Rivlin (Fig. 5) models we are able to achieve

the main goal of obtaining phononic materials with fixed material
parameters that behave simultaneously as having wide stop-
bands (λ = λ1) and entire pass-bands (λ = λ2) for a given
frequency range by imposing pre-stress alone in the annulus
regions. Figs. 4 and 5(a) and (b) are associated with material
properties and initial annulus inner radius that enable feasi-
ble choices, with each of these cases corresponding to pairs of
stretches that are plotted in (c). In particular, we identify and
plot an optimal result within the parameter space P and also
another solution that is identified as, perhaps, more practical in
the sense that the opening up of a wide low-frequency band
gap is achieved at a lower stretch λ1. The optimal solution, a
black diamond corresponding to Φ ≈ 0.78 is plotted in each of
the subfigures of Fig. 4. In Fig. 4(a), solutions that approach this
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Fig. 4. Illustrating both unfeasible (unfilled circles) and feasible (filled, coloured circles) solutions found by the genetic algorithm for the neo-Hookean case. The
colour of the filled circles for the feasible solutions is dictated by the colour bar, illustrating the range of associated Φ ∈ [0, 1], maximized by the choice of λ1 for
those material properties. The optimal solution (black diamond) is determined for the material configuration R̂0 = 0.22, µ̂1 = 10−0.44, ρ̂1 = 10−0.12 coupled with
imposed stretches λ1 = 6.9 and λ2 = 1. The ‘‘nearby’’ solution in a red squared box (in material configuration space) is R̂0 = 0.24, µ̂1 = 10−0.34, ρ̂1 = 10−0.1 coupled
with the (smaller) stretches λ1 = 3.2, λ2 = 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Illustrating both unfeasible (unfilled circles) and feasible (filled, coloured circles) solutions found by the genetic algorithm for the Mooney–Rivlin case. The
colour of the filled circles for the feasible solutions is dictated by the colour bar, illustrating the range of associated Φ ∈ [0, 1], maximized by the choice of λ1 for
those material properties. The optimal solution (black diamond) is determined for the material configuration R̂0 = 0.16, µ̂1 = 10−0.77, ρ̂1 = 10−0.28, S1 = 0.6 coupled
with imposed stretches λ1 = 7 and λ2 = 1. An alternative solution is identified in a red triangular box as R̂0 = 0.11, µ̂ = 10−0.47, ρ̂1 = 10−0.11, S1 = 0.76 coupled
with the (smaller) stretches λ1 = 3, λ2 = 1.5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

optimal result are typically located in the area 1/10 ≤ ρ̂1, µ̂1 ≤ 1.
Fig. 4(b) illustrates that optimal results are found for smaller
values of R̂0, thus avoiding thin annuli where instabilities could
be a serious issue. Finally, Fig. 4(c) illustrates optimal results at
specific stretches. This plot clearly illustrates that configurations
with material properties such that λ2 is close to unity (small
stretch) are favoured in order to ensure a pass-band material,

coupled with a larger stretch (λ1) to achieve a stop-band at low
frequency. This therefore suggests that it is in principle possible
to manufacture a structure such that in its undeformed state it
can ensure wave propagation in the frequency range Ω̂1, whilst
in its deformed state it would act to prevent wave propagation
in that same frequency range. For neo-Hookean materials the
optimal material properties are R̂0 = 0.22, µ̂1 = 10−0.44, ρ̂1 =
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Fig. 6. Dispersion curves illustrating the opening up (choice of λ1) and closing (choice of λ2) of the lowest band gap. The top figures illustrate the neo-Hookean
case for the optimal solution (a) R0 = 0.22, µ1 = 10−0.44, ρ1 = 10−0.12 and alternative solution (b) with R0 = 0.24, µ1 = 10−0.34, ρ1 = 10−0.1 . The
bottom figures illustrate the Mooney–Rivlin case for the optimal solution (c) R̂0 = 0.16, µ̂1 = 10−0.77, ρ̂1 = 10−0.28, S1 = 0.6 and alternative solution (d)
R̂0 = 0.11, µ̂ = 10−0.47, ρ̂1 = 10−0.11, S1 = 0.76.

10−0.12 coupled with imposed stretches λ1 = 6.9 and λ2 = 1. The
associated dispersion curves for this case are plotted in Fig. 6(a).
In (b) of the same figure we also plot the band structure for the
alternative material choice R̂0 = 0.24, µ̂1 = 10−0.34, ρ̂1 = 10−0.1

at (more practical) lower stretches λ1 = 3.2 and λ2 = 1.
Mooney–Rivlin optimal solutions plotted in Fig. 5 follow a

similar trend to the Neo-Hookean results although, as expected, a
little more spread of choices is here emphasized and the optimum
(emphasized in the plots with a black diamond) for the MR is, at
λ = λ1, Φ ≈ 0.84 improving on that achieved for the NH case
(Φ ≈ 0.78). The associated dispersion curves for the MR case are
plotted in Fig. 6 (c, d) for the material choices R̂0 = 0.16, µ̂1 =

10−0.77, ρ̂1 = 10−0.28, S1 = 0.6 associated with the stretches
λ1 = 7 and λ2 = 1 (c) and R̂0 = 0.11, µ = 10−0.47, ρ1 =

10−0.11, S1 = 0.76 associated with the stretches λ1 = 3 and
λ2 = 1.5 (d). In the MR case it is interesting to note that the latter
case has some pre-stretch associated with the complete pass band
medium.

The results illustrate that the ‘best’ feasible solutions all re-
side in the same regions of the parameter space considered,
including the optimal stretches employed. Optimality appears
to stem chiefly from the material configuration and geometry.
This therefore promotes, facilitates and simplifies more practical
aspects of phononic media design.

Generally the convergence of genetic algorithms towards op-
timal solutions can be difficult to achieve, particularly when
the objective function (Φ in this case) is ‘flat ’ in the vicinity
of the optimum and also when the problem involves a high
number of design parameters in a limited region of feasibility.
This problem is called GA-hardness [54]. In order to illustrate
here that the method converged to such optimal solutions, we
carried out a local sensitivity analysis in the region around the
optimal solution, corresponding to the black diamond in Figs. 4–
5 for the neo-Hookean and Mooney–Rivlin cases, respectively. To
this end, small perturbations dx of each parameter and imposed
stretch (corresponding to the step of variation as in the Table 1)
around the optimum solution have been considered until it was
verified that the objective function Φ is no longer increasing

or unfeasible solutions are obtained. The results are shown in
Fig. 7. We notice that the objective function is relatively flat with
respect to µ̂1 and ρ̂1 and this means that it is rather difficult for
the algorithm to find the global optimum. This is more evident in
the neo-Hookean model where, decreasing µ̂1 by up to 5dx, the
objective function continues to increase with feasible solutions.
The same effect is notable, but only up to −dx, for the parameter
ρ̂1 in the neo-Hookean case. For all other design parameters,
the local sensitivity analysis shows that it is not possible to
obtain a further improvement in the fitness function by acting
on that variable separately. Thus the convergence of the genetic
algorithm can be said to be well-illustrated with respect to all
parameters except µ̂1 and ρ̂1. It should be noted however that
the further improvements obtained with the sensitivity analysis
with respect to these two variables can be said to be negligible
from an engineering perspective. Indeed, considering for example
the neo-Hookean case, µ̂1 selected in Fig. 4 is µ̂1 = 10−0.44 while
according to the plot in Fig. 7 an increment of −5dx would take
it to µ̂1 = 10−0.49 with a discrepancy ∆ log µ̂1 ≈ 0.04 and a
discrepancy in Φ of |∆Φ| ≈ 0.06.

5. Concluding remarks

The PC optimization process described above, through the
use of genetic algorithms, illustrates how material parameters
can be selected in order to guide the design of smart materials.
These media are capable of behaving as stop-band or pass-band
materials, employing the same physical and geometrical proper-
ties, simply by imposing different deformations in the cylindrical
annuli, with the GAs permitting optimality.

The optimization has been carried out by allowing the model
parameters (elastic and geometrical constants, applied stretches)
vary over a finite but large window of possible values. This per-
mits the materials engineer to optimize over a broad parameter
space in order to design ideal, optimized materials, or perhaps
close-to-ideal materials in more practical configurations.

Looking ahead to fabrication, recent advances in 3D print-
ing [55–57] and the assumed periodicity of these smart materials
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Fig. 7. Plot of Φ relative to the stretch λ1 and to the optimum set of parameters (corresponding to the black diamond in Figs. 4–5 for the neo-Hookean (a) and
Mooney–Rivlin case (b), respectively), varying each parameter by an increment dx corresponding to the step of variation as in Table 1 whilst others are kept fixed.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

facilitate the manufacturing process. On the point of highly-
deformable materials, it should be noted that we employed stretches
up to λ = 7 in the present study motivated by the classical
data of Treloar [51] on uniaxial extension of rubber and also to
obtain a general indication of the trends of optimal solutions
upon modifying imposed stretch. It is acknowledged that in
practice, stretches are limited by the materials available and also
on their constitutive models. We note however that there have
been recent innovations in the development of highly stretchable
materials [58] and this could become the key for permitting high
annuli stretch. We highlight in Fig. 6(b) and (d) that one can still
find ‘‘good’’ choices in terms of band gap optimization at smaller
stretches. We further note the important property that results
are relatively independent of the constitutive parameter S1 in the
Mooney–Rivlin model. This gives an indication of promise when
employing more complex strain energy functions such as those
described in [59].

The analysis described here can also be considered as opening
up the possibility of designing a wide range of specific ma-
terials for various engineering applications, particularly in the
broader context of more general elastic wave propagation or in
the case where there is an interest in increasing the number
of objectives over which the optimization takes place. This can
be achieved via multi-objective optimization. Some examples of
interest are, the potential to engineer the optimization of engine
noise reduction with lighter materials [7,60]. Similarly in the
acoustics context, porous and layered composites are used to
efficiently absorb sound or for controlling the transmission and
reflection of sound [61,62]. Controlling the volume fractions of
inclusions and their properties in these materials also means
tuning their microstructure and therefore their global response
to propagating elastic waves. Finally, this design principle and
the notion of materials reconfiguration is of significant interest
in the context of more complex, non-periodic composites such as
syntactic foams [63,64], the acoustic properties of which depend
on their loading state. Properties can therefore be optimized by
GA optimization to ensure a specific, highly tailored macrome-
chanical response. These broader applications reveal the breadth
of potential for the class of materials described here.
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