1,054 research outputs found

    What makes or breaks a campaign to stop an invading plant pathogen?

    Get PDF
    Diseases in humans, animals and plants remain an important challenge in our society. Effective control of invasive pathogens often requires coordinated concerted action of a large group of stakeholders. Both epidemiological and human behavioural factors influence the outcome of a disease control campaign. In mathematical models that are frequently used to guide such campaigns, human behaviour is often ill-represented, if at all. Existing models of human, animal and plant disease that do incorporate participation or compliance are often driven by pay-offs or direct observations of the disease state. It is however very well known that opinion is an important driving factor of human decision making. Here we consider the case study of Citrus Huanglongbing disease (HLB), which is an acute bacterial disease that threatens the sustainability of citrus production across the world. We show how by coupling an epidemiological model of this invasive disease with an opinion dynamics model we are able to answer the question: What makes or breaks the effectiveness of a disease control campaign? Frequent contact between stakeholders and advisors is shown to increase the probability of successful control. More surprisingly, we show that informing stakeholders about the effectiveness of control methods is of much greater importance than prematurely increasing their perceptions of the risk of infection. We discuss the overarching consequences of this finding and the effect on human as well as plant disease epidemics

    Space radiation dosimetry on US and Soviet manned missions

    Get PDF
    Radiation measurements obtained on board U.S. and Soviet spacecraft are presented and discussed. A considerable amount of data has now been collected and analyzed from measurements with a variety of detector types in low-Earth orbit. The objectives of these measurements have been to investigate the dose and Linear Energy Transfer (LET) spectra within the complex shielding of large spacecraft. The shielding modifies the external radiation (trapped protons, electrons, cosmic ray nuclei) which, in turn, is quite dependent on orbital parameters (altitude, inclination). For manned flights, these measurements provide a crew exposure record and a data base for future spacecraft design and flight planning. For the scientific community they provide useful information for planning and analyzing data from experiments with high sensitivity to radiation. In this paper, results of measurements by both passive and active detectors are described. High-LET spectra measurements were obtained by means of plastic nuclear track detectors (PNTD's) while thermoluminescent dosimeters (TLD's) measured the dose

    Prediction of LDEF ionizing radiation environment

    Get PDF
    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements

    Radiation exposure of LDEF: Initial results

    Get PDF
    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils

    Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF

    Get PDF
    Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom

    Charged particle LET-spectra measurements aboard LDEF

    Get PDF
    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

    Naturally propped fractures caused by quartz cementation preserve oil reservoirs in basement rocks

    Get PDF
    MB is in receipt of a postgraduate studentship from PTDF (Nigeria). Skilled technical support was provided by M. Baron and J. Still. Two reviewers made valuable criticisms that improved the paper.Peer reviewedPostprin

    Brain Injury With Systemic Inflammation in Newborns With Congenital Heart Disease Undergoing Heart Surgery

    Get PDF
    The potential role of systemic inflammation on brain injury in newborns with congenital heart disease (CHD) was assessed by measuring levels of central nervous system (CNS)-derived proteins in serum prior to and following cardiac surgery. A total of 23 newborns (gestational age, 39±1 weeks) with a diagnosis of CHD that required cardiac surgery with cardiopulmonary bypass (CPB) were enrolled in the current study. Serum samples were collected immediately prior to surgery and 2, 24 and 48 h following CPB, and serum levels of phosphorylated neurofilament-heavy subunit (pNF-H), neuron-specific enolase (NSE) and S100B were analyzed. Systemic inflammation was assessed by measuring serum concentrations of complement C5a and complement sC5b9, and the following cytokines: Interleukin (IL)-1β, IL-6, IL-8, IL-10, IL12p70, interferon γ and tumor necrosis factor (TNF)-α. Analysis of cord blood from normal term deliveries (n=26) provided surrogate normative values for newborns. pNF-H and S100B were 2.4- to 2.8-fold higher (P\u3c0.0001) in patient sera than in cord blood prior to surgery and remained elevated following CPB. Pre-surgical serum pNF-H and S100B levels directly correlated with interleukin (IL)-12p70 (ρ=0.442, P\u3c0.05). pNF-H was inversely correlated with arterial pO2 prior to surgery (ρ=-0.493, P=0.01) and directly correlated with arterial pCO2 post-CPB (ρ=0.426, P\u3c0.05), suggesting that tissue hypoxia and inflammation contribute to blood brain barrier (BBB) dysfunction and neuronal injury. Serum IL12p70, IL-6, IL-8, IL-10 and TNF-α levels were significantly higher in patients than in normal cord blood and levels of these cytokines increased following CPB (P\u3c0.001). Activation of complement was observed in all patients prior to surgery, and serum C5a and sC5b9 remained elevated up to 48 h post-surgery. Furthermore, they were correlated (P\u3c0.05) with low arterial pO2, high pCO2 and elevated arterial pressure in the postoperative period. Length of mechanical ventilation was associated directly with post-surgery serum IL-12p70 and IL-8 concentrations (P\u3c0.05). Elevated serum concentrations of pNF-H and S100B in neonates with CHD suggest BBB dysfunction and CNS injury, with concurrent hypoxemia and an activated inflammatory response potentiating this effect

    Measurement of the total cross section of heavy water in the 0.1 meV–1 eV energy range at 20 and 50 ◦C

    Get PDF
    Despite the importance of heavy water as a neutron moderator, there are few measurements of its total neutron cross section for cold and thermal energies, and none of them covers the range of temperature (40–70◦C) used in moderator and reflector tanks in research reactors, and in CANDU nuclear power plants. To cover this deficit, we measured the total cross section of liquid heavy water at 20◦C and 50◦C using the SANS beamline at the LENS facility at Indiana University. The time-of-flight technique was used, in a sample-in/sample-out measurement. The use of the solid methane cold neutron source at LENS allowed measuring in a broad range in energy, from 0.1meV to 1 eV. In this paper we present details of the measurement and processing of the data, and comparison with previous experimental measurements and calculation models. This work is included in the Action Plan of the IAEA Coordinated Research Project “Advanced Moderators for Intense Cold Neutron Beams in Materials Research”

    LET spectra measurements of charged particles in the P0006 experiment on LDEF

    Get PDF
    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members
    corecore