246 research outputs found

    Clustering of Codons with Rare Cognate tRNAs in Human Genes Suggests an Extra Level of Expression Regulation

    Get PDF
    In species with large effective population sizes, highly expressed genes tend to be encoded by codons with highly abundant cognate tRNAs to maximize translation rate. However, there has been little evidence for a similar bias of synonymous codons in highly expressed human genes. Here, we ask instead whether there is evidence for the selection for codons associated with low abundance tRNAs. Rather than averaging the codon usage of complete genes, we scan the genes for windows with deviating codon usage. We show that there is a significant over representation of human genes that contain clusters of codons with low abundance cognate tRNAs. We name these regions, which on average have a 50% reduction in the amount of cognate tRNA available compared to the remainder of the gene, RTS (rare tRNA score) clusters. We observed a significant reduction in the substitution rate between the human RTS clusters and their orthologous chimp sequence, when compared to non–RTS cluster sequences. Overall, the genes with an RTS cluster have higher tissue specificity than the non–RTS cluster genes. Furthermore, these genes are functionally enriched for transcription regulation. As genes that regulate transcription in lower eukaryotes are known to be involved in translation on demand, this suggests that the mechanism of translation level expression regulation also exists within the human genome

    Depletion of somatic mutations in splicing-associated sequences in cancer genomes

    Get PDF
    Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection

    Increased incidence of rare codon clusters at 5' and 3' gene termini:implications for function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The process of translation can be affected by the use of rare versus common codons within the mRNA transcript.</p> <p>Results</p> <p>Here, we show that rare codons are enriched at the 5' and 3' termini of genes from <it>E. coli </it>and other prokaryotes. Genes predicted to be secreted show significant enrichment in 5' rare codon clusters, but not 3' rare codon clusters. Surprisingly, no correlation between 5' mRNA structure and rare codon usage was observed.</p> <p>Conclusions</p> <p>Potential functional roles for the enrichment of rare codons at terminal positions are explored.</p

    Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries

    Get PDF
    Phage display of combinatorial antibody libraries is a very efficient method for selecting recombinant antibodies against a wide range of molecules. It has been applied very successfully for the generation of therapeutic antibodies for more than a decade. To increase robustness and reproducibility of the selection procedure, we developed a semi-automated selection method for the generation of recombinant antibodies from phage display libraries. In this procedure, the selection targets are specifically immobilised to magnetic particles which can then by automatically handled by a magnetic particle processor. At present up to 96 samples can be handled simultaneously. Applying the processor allows standardisation of panning parameters such as washing conditions, incubation times, or to perform parallel selections on same targets under different buffer conditions. Additionally, the whole protocol has been streamlined to carry out bead loading, phage selection, phage amplification between selection rounds and magnetic particle ELISA for confirmation of binding activity in microtiter plate formats. Until now, this method has been successfully applied to select antibody fragments against different types of target, such as peptides, recombinant or homologous proteins, or chemical compounds

    A Universal Trend of Reduced mRNA Stability near the Translation-Initiation Site in Prokaryotes and Eukaryotes

    Get PDF
    Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA

    Nicotinic acetylcholine receptor subunit variants are associated with blood pressure; findings in the Old Order Amish and replication in the Framingham Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic blood pressure, influenced by both genetic and environmental factors, is regulated via sympathetic nerve activity. We assessed the role of genetic variation in three subunits of the neuromuscular nicotinic acetylcholine receptor positioned on chromosome 2q, a region showing replicated evidence of linkage to blood pressure.</p> <p>Methods</p> <p>We sequenced <it>CHRNA1</it>, <it>CHRND </it>and <it>CHRNG </it>in 24 Amish subjects from the Amish Family Diabetes Study (AFDS) and identified 20 variants. We then performed association analysis of non-redundant variants (n = 12) in the complete AFDS cohort of 1,189 individuals, and followed by genotyping blood pressure-associated variants (n = 5) in a replication sample of 1,759 individuals from the Framingham Heart Study (FHS).</p> <p>Results</p> <p>The minor allele of a synonymous coding SNP, rs2099489 in <it>CHRNG</it>, was associated with higher systolic blood pressure in both the Amish (p = 0.0009) and FHS populations (p = 0.009) (minor allele frequency = 0.20 in both populations).</p> <p>Conclusion</p> <p><it>CHRNG </it>is currently thought to be expressed only during fetal development. These findings support the Barker hypothesis, that fetal genotype and intra-uterine environment influence susceptibility to chronic diseases later in life. Additional studies of this variant in other populations, as well as the effect of this variant on acetylcholine receptor expression and function, are needed to further elucidate its potential role in the regulation of blood pressure. This study suggests for the first time in humans, a possible role for genetic variation in the neuromuscular nicotinic acetylcholine receptor, particularly the gamma subunit, in systolic blood pressure regulation.</p

    The fitness cost of mis-splicing is the main determinant of alternative splicing patterns

    Get PDF
    Background Most eukaryotic genes are subject to alternative splicing (AS), which may contribute to the production of protein variants or to the regulation of gene expression via nonsense-mediated messenger RNA (mRNA) decay (NMD). However, a fraction of splice variants might correspond to spurious transcripts and the question of the relative proportion of splicing errors to functional splice variants remains highly debated. Results We propose a test to quantify the fraction of AS events corresponding to errors. This test is based on the fact that the fitness cost of splicing errors increases with the number of introns in a gene and with expression level. We analyzed the transcriptome of the intron-rich eukaryote Paramecium tetraurelia. We show that in both normal and in NMD-deficient cells, AS rates strongly decrease with increasing expression level and with increasing number of introns. This relationship is observed for AS events that are detectable by NMD as well as for those that are not, which invalidates the hypothesis of a link with the regulation of gene expression. Our results show that in genes with a median expression level, 92–98% of observed splice variants correspond to errors. We observed the same patterns in human transcriptomes and we further show that AS rates correlate with the fitness cost of splicing errors. Conclusions These observations indicate that genes under weaker selective pressure accumulate more maladaptive substitutions and are more prone to splicing errors. Thus, to a large extent, patterns of gene expression variants simply reflect the balance between selection, mutation, and drift

    CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

    Get PDF
    Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes

    Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates

    Get PDF
    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex β€˜splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5β€² splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease
    • …
    corecore