27 research outputs found

    Insights on the emerging biotechnology of histidine-rich peptides

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICIn the late 70's, the discovery of the restriction enzymes made possible the biological production of functional proteins by recombinant DNA technologies, a fact that largely empowered both biotechnological and pharmaceutical industries. Short peptides or small protein domains, with specific molecular affinities, were developed as purification tags in downstream processes to separate the target protein from the culture media or cell debris, upon breaking the producing cells. Among these tags, and by exploiting the interactivity of the imidazole ring of histidine residues, the hexahistidine peptide (H6) became a gold standard. Although initially used almost exclusively in protein production, H6 and related His-rich peptides are progressively proving a broad applicability in novel utilities including enzymatic processes, advanced drug delivery systems and diagnosis, through a so far unsuspected adaptation of their binding capabilities. In this context, the coordination of histidine residues and metals confers intriguing functionalities to His-rich sequences useable in the forward-thinking design of protein-based nano- and micro-materials and devices, through strategies that are comprehensively presented here

    A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge : drug contentent and microbial evaluation

    Get PDF
    Emerging pollutants can reach the environment through the sludge of Wastewater Treatment Plants. In this work, the use of Trametes versicolor in biopiles at lab-scale was studied, evaluating its capacity to remove the most hydrophobic Pharmaceuticals and assessing the evolution of the biopiles microbial communities. The total removal of drugs at real concentrations from sewage sludge was assessed for non-inoculated and fungal inoculated biopiles, testing if the re-inoculation of the biopiles after 22 days of treatment would improve the removal yields. It was found that 2 out of the 15 initially detected pharmaceuticals were totally degraded after 22 days, and re-inoculated fungal biopiles achieved higher removal rates than non-re-inoculated fungal biopiles for single compounds and for all the drugs simultaneously: 66.45% and 49.18% re-inoculated and non-re-inoculated biopiles, respectively. Finally, the study of the bacterial and fungal communities revealed that fungal inoculated and non-inoculated biopiles evolved to similar communities adapted to the presence of those drugs

    Protein features instruct the secretion dynamics from metal-supported synthetic amyloids

    Get PDF
    Hexahistidine-tagged proteins can be clustered by divalent cations into self-containing, dynamic protein depots at the microscale, which under physiological conditions leak functional protein. While such protein granules show promise in clinics as time-sustained drug delivery systems, little is known about how the nature of their components, that is, the protein and the particular cation used as cross-linker, impact on the disintegration of the material and on its secretory performance. By using four model proteins and four different cation formulations to control aggregation, we have here determined a moderate influence of the used cation and a potent impact of some protein properties on the release kinetics and on the final fraction of releasable protein. In particular, the electrostatic charge at the amino terminus and the instability and hydropathicity indexes determine the disintegration profile of the depot. These data offer clues for the fabrication of efficient and fully exploitable secretory granulesthat being biocompatible and chemically homogenous allow their tailored use as drug delivery platforms in biological systems

    Protein scaffolds in human clinics

    Get PDF
    Acord transformatiu CRUE-CSICFundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions

    Effect of cultivation conditions on β-estradiol removal in laboratory and pilot-plant photobioreactors by an algal-bacterial consortium treating urban wastewater

    Get PDF
    The use of microalgal consortia for urban wastewater treatment is an increasing trend, as it allows simultaneous nutrient removal and biomass production. Emerging contaminants proposed for the list of priority substances such as the hormone 17β-estradiol are commonly found in urban wastewater, and their removal using algal monocultures has been accomplished. Due to the inherent potential of algae-based systems, this study aimed to assess the capability of native photobioreactor biomass to remove 17β-estradiol under indoor and outdoor conditions. At the same time, the microbial community changes in regular and bioaugmented operations with Scenedesmus were assessed. The results show that almost complete removal (>93.75%) of the hormone 17β-estradiol can be attained in the system under favourable seasonal conditions, although these conditions greatly influence biomass concentrations and microbial diversity. Even under the harsh conditions of low temperatures and solar irradiation, the established consortium removed more than 50% of the pollutant in 24 h. While species from genus Chlorella were stable during the entire operation, the microbial diversity analysis revealed that assorted and evenly distributed populations stimulate the removal rates. Bioaugmentation assays proved that the input of additional biomass results in higher overall removal and decreases the yield per mg of biomass

    Recombinant vaccines in 2022 : a perspective from the cell factory

    Get PDF
    The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products

    Probing the Biosafety of Implantable Artificial Secretory Granules for the Sustained Release of Bioactive Proteins

    Get PDF
    Altres ajuts: acords transformatius de la UABAmong bio-inspired protein materials, secretory protein microparticles are of clinical interest as self-contained, slow protein delivery platforms that mimic secretory granules of the human endocrine system, in which the protein is both the drug and the scaffold. Upon subcutaneous injection, their progressive disintegration results in the sustained release of the building block polypeptides, which reach the bloodstream for systemic distribution and subsequent biological effects. Such entities are easily fabricated in vitro by Zn-assisted cross-molecular coordination of histidine residues. Using cationic Zn for the assembly of selected pure protein species and in the absence of any heterologous holding material, these granules are expected to be nontoxic and therefore adequate for different clinical uses. However, such presumed biosafety has not been so far confirmed and the potential protein dosage threshold not probed yet. By selecting the receptor binding domain (RBD) from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein as a model protein and using a mouse lab model, we have explored the toxicity of RBD-made secretory granules at increasing doses up to ∼100 mg/kg of animal weight. By monitoring body weight and biochemical blood markers and through the histological scrutiny of main tissues and organs, we have not observed systemic toxicity. Otherwise, the bioavailability of the material was demonstrated by the induction of specific antibody responses. The presented data confirm the intrinsic biosafety of artificial secretory granules made by recombinant proteins and prompt their further clinical development as self-contained and dynamic protein reservoirs

    The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles

    Get PDF
    Altres ajuts: Acord transformatiu CRUE-CSICHistidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the His-mediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials

    Biofabrication of Self-Assembling Covalent Protein Nanoparticles through Histidine-Templated Cysteine Coupling

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaNanoscale protein materials show increasing applications in biotechnology and biomedicine, addressing catalysis, drug delivery, or tissue engineering. Although protein oligomerization is reachable through several engineering approaches, including the use of divalent cations for histidine-rich stretches, the effectiveness of cation-His binding is influenced by protein conformation, media composition, and chelating agents. Thus, looking for powerful, green, cross-linker-free, and transversal oligomerization platforms, we have built a histidine-templated cysteine-coupling concept. On this basis, we have engineered a Cys-containing, H6-derived His-Cys hybrid tag that enables the spontaneous and efficient self-assembling of tagged proteins into monodisperse nanoparticles through a highly ordered covalent binding process. Although the generated nanostructures are supported by disulfide bridge formation and exclusively reversed by reducing agents but not by chelating agents, the presence of cysteine residues does not disrupt the metal-binding abilities of histidine residues within the tag. This fact allows one to combine the one-step IMAC-based protein purification and, also, the Zn2+-induced formation of higher-order microparticulate materials as nanoparticle-releasing protein-only depots. The dual mode of cross-molecular interactivity shown by the hybrid tag and the structural robustness and stability of the resulting nanoparticles offer wide applicability of the green biofabrication concept proposed here for the further development of clinically usable protein materials
    corecore