113 research outputs found

    Novel Small Molecule Hsp90/Cdc37 Interface Inhibitors Indirectly Target K-Ras-Signaling

    Get PDF
    The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 μM–44 μM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases

    Novel Small Molecule Hsp90/Cdc37 Interface Inhibitors Indirectly Target K-Ras-Signaling

    Get PDF
    The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 μM–44 μM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases

    Cognitive Effects of White Matter Pathology in Normal and Pathological Aging

    Get PDF
    We examined whether cerebrovascular white matter pathology is related to cognition as measured by the compound score of CERAD neuropsychological battery in cognitively normal older adults, patients with mild cognitive impairment, and patients with Alzheimer's disease (total n = 149), controlling for age and education. Trend-level effects of white matter pathology on cognition were only observed in patients with Alzheimer's disease (p = 0.062, eta(2) = 0.052), patients with severe frontal white matter pathology performed notably worse than those with milder pathology. This indicates that frontal cerebrovascular pathology may have an additive negative effect on cognition in Alzheimer's disease

    HLA and non-HLA genes and familial predisposition to autoimmune diseases in families with a child affected by type 1 diabetes

    Get PDF
    Genetic predisposition could be assumed to be causing clustering of autoimmunity in individuals and families. We tested whether HLA and non-HLA loci associate with such clustering of autoimmunity. We included 1,745 children with type 1 diabetes from the Finnish Pediatric Diabetes Register. Data on personal or family history of autoimmune diseases were collected with a structured questionnaire and, for a subset, with a detailed search for celiac disease and autoimmune thyroid disease. Children with multiple autoimmune diseases or with multiple affected first-or second-degree relatives were identified. We analysed type 1 diabetes related HLA class II haplotypes and genotyped 41 single nucleotide polymorphisms (SNPs) outside the HLA region. The HLA-DR4-DQ8 haplotype was associated with having type 1 diabetes only whereas the HLA-DR3-DQ2 haplotype was more common in children with multiple autoimmune diseases. Children with multiple autoimmune diseases showed nominal association with RGS1 (rs2816316), and children coming from an autoimmune family with rs11711054 (CCR3-CCR5). In multivariate analyses, the overall effect of non-HLA SNPs on both phenotypes was evident, associations with RGS1 and CCR3-CCR5 region were confirmed and additional associations were implicated: NRP1, FUT2, and CD69 for children with multiple autoimmune diseases. In conclusion, HLA-DR3-DQ2 haplotype and some non-HLA SNPs contribute to the clustering of autoimmune diseases in children with type 1 diabetes and in their families

    Pancreatic metabolism, blood flow, and β-cell function in obese humans.

    Get PDF
    Context: Glucolipotoxicity is believed to induce pancreatic &beta;-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. Objective: The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. Design: This was a cross-sectional study. Setting: The study was conducted in a clinical research center. Participants: Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. Interventions: PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. Main Outcome Measures: Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of &beta;-cell function were measured. Results: PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P &lt; .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P &lt; .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of &beta;-cell function. Conclusions: Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to &beta;-cell dysfunction and in the pathogenesis of type 2 diabetes. &nbsp;</div

    APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly

    Get PDF
    BACKGROUND: Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS: Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS: In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS: Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ

    Iron Overload in Allogeneic Hematopoietic Cell Transplantation Outcome: A Meta-Analysis

    Get PDF
    AbstractAn elevated ferritin level before allogeneic hematopoietic cell transplantation (HCT) is an adverse prognostic factor for overall survival (OS) and nonrelapse mortality. Because ferritin is an imperfect surrogate of iron stores, the prognostic role of iron overload remains unclear. We conducted a patient-level meta-analysis of 4 studies that used magnetic resonance imaging to estimate pre-HCT liver iron content (LIC). An elevated LIC was not associated with a significant increase in mortality: the hazard ratio (HR) for mortality associated with LIC > 7 mg/g dry weight (primary endpoint) was 1.4 (P = .18). In contrast, ferritin >1000 ng/mL was a significant prognostic factor (HR for mortality, 1.7; P = .036). There was, however, no significant association between ferritin > 2500 and mortality. This meta-analysis suggests that iron overload, as assessed by LIC, is not a strong prognostic factor for OS in a general adult HCT population. Our data also suggest that ferritin is an inadequate surrogate for iron overload in HCT

    MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study

    Get PDF
    ConclusionsTexture features which measure randomness, heterogeneity or smoothness and homogeneity may either directly or indirectly reflect underlying growth patterns of breast tumours. TA and volumetric analysis may provide a way to evaluate the biologic aggressiveness of breast tumours and provide aid in decisions regarding therapeutic efficacy.</p
    • …
    corecore