109 research outputs found

    ESR Study of Optically Induced Phase Transitions

    Get PDF
    We have identified an optically enhanced magnetic phase transition in the newly synthesized organic molecular charge transfer salt, (BEDT-TTF)3Ta2F11 (BEDT-TTF bisethylenedithiolotetrathiafulvalene) by ESR absorption measurements in the X band microwave region. At room temperature, only a doublet state ESR absorption is observed, but below 30 K severa~ tripl~t E.SR absorpti_ons appear. The orientation dependence of the ESR absorption under lllummat10n at energies near the band gaps in the material ( 640 nm, T = 12 to 5 K H0 \u3c 0.34 T) indicates that there are rapid spin exchange processes with times r \u3c w-s; near 7 ~o 5 K.along cert~in ~rystallographic directions with a temperature dependen~e suggesting spm-lattlce relaxation times which proceed via Van Vleck direct processes. This, to our knowledge, is the first case where the magnetic properties of a charge transfer salt are altered by the interaction with photons of energy equal to the band gaps in a low dimensional solid providing a new, interesting way to investigate these materials

    Spin Diode Based on Fe/MgO Double Tunnel Junction

    Full text link
    We demonstrate a spin diode consisting of a semiconductor free nano-scale Fe/MgO-based double tunnel junction. The device exhibits a near perfect spin-valve effect combined with a strong diode effect. The mechanism consistent with our data is resonant tunneling through discrete states in the middle ferromagnetic layer sandwiched by tunnel barriers of different spin-dependent transparency. The observed magneto-resistance is record high, ~4000%, essentially making the structure an on/off spin-switch. This, combined with the strong diode effect, ~100, offers a new device that should be promising for such technologies as magnetic random access memory and re-programmable logic.Comment: 14 page

    Lack of association between the Trp719Arg polymorphism in kinesin-like protein-6 and coronary artery disease in 19 case-control studies

    Get PDF

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Fe structural and magnetic phases in Fe/Ni81Fe19(001) multilayers

    No full text
    The structure of epitaxially sputtered single-crystalline Fe/Ni81Fe19(001)\rm Fe/Ni _{81} Fe _{19} (001) multilayers was studied using X-ray diffraction. As the thickness of the Fe layers is increased the structure of the Fe layers changes from vertically expanded fcc (001) to relaxed fcc (001), and finally, to bcc (011), thus identically replicating the structural behavior found in thin Fe films on Cu(001) single crystals. Corresponding to the structural transitions of the Fe layers are changes in the magnetic properties. The relaxed fcc phase contains non-magnetic Fe, which can lead to antiferromagnetic coupling of the Ni81Fe19\rm Ni _{81} Fe _{19} layers across the Fe layers

    Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment

    Get PDF
    Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol-assisted chemical vapor deposition to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase and showed excellent antibacterial (vs Staphylococcus aureus and Escherichia coli) ability. Using a combination of transient absorption spectroscopy, photoluminescence measurements, and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples and the enhanced UV photoactivities observed
    • …
    corecore