47 research outputs found

    Applications of Contaminant Fate and Bioaccumulation Models in Assessing Ecological Risks of Chemicals:  A Case Study for Gasoline Hydrocarbons

    Get PDF
    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management

    Sensitivity of the Indo-Pacific coral Acropora millepora to aromatic hydrocarbons

    Get PDF
    The risks posed by petroleum spills to coral reefs are poorly understood and quantifying acute toxicity thresholds for aromatic hydrocarbons to reef-building corals is required to assess their sensitivity relative to other taxa. In this study, we exposed Acropora millepora to toluene, naphthalene and 1-methylnaphthalene (1-MN) in a flow-through system and assessed survivorship and sublethal responses including growth, colour and the photosynthetic performance of symbionts. Median 50% lethal concentrations (LC50s) decreased over the 7-d exposure period, reaching asymptotic values of 22,921, 5,268, 1167 μg L−1 for toluene, naphthalene and 1-MN, respectively. Corresponding toxicokinetic parameters (εLC50) defining the time progression of toxicity were 0.830, 0.692, and 0.256 d−1, respectively. Latent effects after an additional 7-d recovery in uncontaminated seawater were not observed. Effect concentrations (EC50s) for 50% growth inhibition were 1.9- to 3.6-fold lower than the LC50s for each aromatic hydrocarbon. There were no observed effects of aromatic hydrocarbon exposure on colour score (a proxy for bleaching) or photosynthetic efficiency. Acute and chronic critical target lipid body burdens (CTLBBs) of 70.3 ± 16.3 and 13.6 ± 18.4 μmol g−1 octanol (± standard error) were calculated for survival and growth inhibition based on 7-d LC50 and EC10 values, respectively. These species-specific constants indicate adult A. millepora is more sensitive than other corals reported so far but is of average sensitivity in comparison with other aquatic taxa in the target lipid model database. These results advance our understanding of acute hazards of petroleum contaminants to key habitat-building tropical coral reef species

    Workgroup Report: Review of Fish Bioaccumulation Databases Used to Identify Persistent, Bioaccumulative, Toxic Substances

    Get PDF
    Chemical management programs strive to protect human health and the environment by accurately identifying persistent, bioaccumulative, toxic substances and restricting their use in commerce. The advance of these programs is challenged by the reality that few empirical data are available for the tens of thousands of commercial substances that require evaluation. Therefore, most preliminary assessments rely on model predictions and data extrapolation. In November 2005, a workshop was held for experts from governments, industry, and academia to examine the availability and quality of in vivo fish bioconcentration and bioaccumulation data, and to propose steps to improve its prediction. The workshop focused on fish data because regulatory assessments predominantly focus on the bioconcentration of substances from water into fish, as measured using in vivo tests or predicted using computer models. In this article we review of the quantity, features, and public availability of bioconcentration, bioaccumulation, and biota–sediment accumulation data. The workshop revealed that there is significant overlap in the data contained within the various fish bioaccumulation data sources reviewed, and further, that no database contained all of the available fish bioaccumulation data. We believe that a majority of the available bioaccumulation data have been used in the development and testing of quantitative structure–activity relationships and computer models currently in use. Workshop recommendations included the publication of guidance on bioconcentration study quality, the combination of data from various sources to permit better access for modelers and assessors, and the review of chemical domains of existing models to identify areas for expansion

    Aquatic exposures of chemical mixtures in urban environments: approaches to impact assessment

    Get PDF
    Urban regions of the world are expanding rapidly, placing additional stress on water resources. Urban water bodies serve many purposes from washing and sources of drinking water to transport and conduits for storm drainage and effluent discharge. These water bodies receive chemical emissions arising from either single or multiple point sources, diffuse sources which can be continuous, intermittent or seasonal. Thus, aquatic organisms in these water bodies are exposed to temporally and compositionally variable mixtures. We have delineated source-specific signatures of these mixtures for diffuse urban runoff and urban point source exposure scenarios to support risk assessment and management of these mixtures. The first step in a tiered approach to assessing chemical exposure has been developed based on the Event Mean Concentration concept with chemical concentrations in runoff defined by volumes of water leaving each surface and the chemical exposure mixture profiles for different urban scenarios. Although generalizations can be made about the chemical composition of urban sources and event mean exposure predictions for initial prioritization, such modelling needs to be complemented with biological monitoring data. It is highly unlikely that the current paradigm of routine regulatory chemical monitoring alone will provide a realistic appraisal of urban aquatic chemical mixture exposures. Future consideration is also needed on the role of non-chemical stressors in such highly modified urban water bodies

    Dual use of Medicare and the Veterans Health Administration: are there adverse health outcomes?

    Get PDF
    BACKGROUND: Millions of veterans are eligible to use the Veterans Health Administration (VHA) and Medicare because of their military service and age. This article examines whether an indirect measure of dual use based on inpatient services is associated with increased mortality risk. METHODS: Data on 1,566 self-responding men (weighted N = 1,522) from the Survey of Assets and Health Dynamics among the Oldest Old (AHEAD) were linked to Medicare claims and the National Death Index. Dual use was indirectly indicated when the self-reported number of hospital episodes in the 12 months prior to baseline was greater than that observed in the Medicare claims. The independent association of dual use with mortality was estimated using proportional hazards regression. RESULTS: 96 (11%) of the veterans were classified as dual users. 766 men (50.3%) had died by December 31, 2002, including 64.9% of the dual users and 49.3% of all others, for an attributable mortality risk of 15.6% (p < .003). Adjusting for demographics, socioeconomics, comorbidity, hospitalization status, and selection bias at baseline, as well as subsequent hospitalization for ambulatory care sensitive conditions, the independent effect of dual use was a 56.1% increased relative risk of mortality (AHR = 1.561; p = .009). CONCLUSION: An indirect measure of veterans' dual use of the VHA and Medicare systems, based on inpatient services, was associated with an increased risk of death. Further examination of dual use, especially in the outpatient setting, is needed, because dual inpatient and dual outpatient use may be different phenomena

    Comparison of In Situ and Ex Situ Equilibrium Passive Sampling for Measuring Freely Dissolved Concentrations of Parent and Alkylated Polycyclic Aromatic Hydrocarbons in Sediments

    No full text
    Equilibrium passive sampling methods (EPSMs) allow quantification of freely dissolved contaminant concentrations (Cfree) in sediment porewater. Polydimethylsiloxane (PDMS) is a convenient sampling polymer that can be equilibrated in field (in situ) or laboratory (ex situ) sediments to determine Cfree, providing reliable compound‐specific PDMS–water partition coefficients (KPDMS‐water) are available. Polycyclic aromatic hydrocarbons (PAHs) are an important class of sediment contaminants comprised of parent and alkylated homologs. However, application of EPSM to alkylated PAHs is challenged by lack of KPDMS‐water measurements. Our first objective was to obtain KPDMS‐water for 9 alkylated PAHs and biphenyls using 3 different PDMS‐coated fibers. Quantitative relationships were then established to define KPDMS‐water for 18 parent and 16 alkyl PAHs included in the US Environmental Protection Agency's sediment quality benchmark method for benthic life protection based on additive toxic units. The second objective was to compare Cfree in porewater obtained using both in situ and ex situ EPSMs at 6 Baltic Sea locations. The results indicated that in situ and ex situ Cfree for alkyl PAHs generally agreed within a factor of 3. Further, all sites exhibited additive toxic units <1, indicating that PAHs pose a low risk to benthos. The results extend practical application of EPSMs for improved risk assessment and derivation of porewater‐based remediation goals for PAH‐contaminated sediments. Environ Toxicol Chem 2020;39:2169–2179. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC
    corecore