26 research outputs found

    Baseline description of the Benthic Biotopes for two Long-Term Ecological Research (LTER) stations in Algoa Bay, Agulhas ecoregion, South Africa

    Get PDF
    Shallow coastal marine ecosystems provide important resources to society but are increasingly under threat from anthropogenic impacts. These systems form an interface between land and sea, providing valuable resources. Global environmental change, overexploitation, habitat transformation, pollution and policies aimed at short-term socio-economic gains are driving the loss of natural resources, productivity and biodiversity. Consequently, a comprehensive and holistic understanding of the current and future states of marine ecosystems is essential. This requires insight into the processes involved in maintaining genetic, species, habitat, community and biotope diversity at an ecosystem level. An understanding of ecosystem processes and the ability to detect changes in biodiversity, biotopes, seascape composition and ecosystem functioning require observation made over time and space. In response to this need, Long-Term Ecological Research (LTER) programmes such as those established by the South African Environmental Observation Network (SAEON) supported by the Department of Science and Innovation’s (DSI) Shallow Marine and Coastal Research Infrastructure (SMCRI) collect long–term observational data from different environments and systems. This study aimed to evaluate data collected as part of the developmental phase of a newly established benthic research platform. The datasets constructed are used to develop a baseline description of the benthic biotopes of two study areas within Algoa Bay. It aimed to gain insight into the feasibility of the methods used and the value of the data and derived essential biological variables (EVB). Assessing the sustainability of the programme over time was done through a practical evaluation of the methodology to be used and the technical feasibility of data collection and analysis. It furthermore aimed to assess the data usefulness in describing biodiversity at various scales and its sensitivity in reporting change. This pilot study provides valuable insight into data collection methodologies and introduces new sampling platforms. The baseline dataset consisted of data collected during the first 18 months of the SAEON Benthic Ecosystem Long-Term Ecological Research (BELTER) platform in Algoa Bay, Agulhas ecoregion, Western Indian Ocean, South Africa. This comprised of the collection of images for 150 m2 of the researched benthic seascape and 306 stereo video data streams. The 77 760 point dataset allowed the identification of 12 substrate types, 7 biotopes, 44 sub-biotope units, 377 sessile and sedentary benthic species and 51 ichthyofauna species. The described habitat and benthic communities and the defined benthic biotopes allowed for the assessment of biotope heterogeneity and the construction of a provisional distribution map for the broader biotopes. This work includes a study into the infra- and supra-benthic ichthyofauna associated with the defined biotopes and investigates the role habitat and benthic communities play in the distribution of these fish 3 assemblages. Lastly, it assesses the value of morphological traits and diversity indices for describing and comparing abiotic and biotic components of observed systems within the shallow coastal marine seascape. This study shows that species composition differs significantly between biotopes with habitat type playing a key role in the composition of the benthos. Substrate type, consolidated or unconsolidated, depth and the composition of the soft sediment is the most important determining factors. The White Sands Reef station has a higher species diversity than the St Croix Island Complex station with a higher percentage cover associated with the hard substrate. The dissimilarity between biotopes and communities are generally high although similarity within the biotopes or communities was found to be relatively low. This was considered indicative of high heterogeneity within the biotopes and a patch or mosaic-like distribution of communities within the broader biotope. A fine-scale a posteriori analysis of the data collected confirmed the high heterogeneous nature of both habitat and communities within the broader biotope. The description of the abiotic and biotic variables resulted in the identification of a diverse suite of biotope subunits. The character of the biotope hinges not only on the composition of the substrate and biota present but the contribution of smaller distinct biotopes subunits, their distribution and representation within broader biotopes and the degree these are shared with other broader biotopes. The distribution of these biotope units at different scales is believed to be important in understanding inherent diversity, niche partitioning and connectivity within a highly heterogeneous seascape. Ichthyofauna associated with the broader biotopes were indicative of the substrate type. Low profile reef systems with interspaced sandy stretches supported both reef fish and those typically associated with sandy substrates. Benthic biotopes associated characteristically with higher profile reef systems and less sand or soft sediment were mainly utilized by reef-associated fish species. Substrate type, depth and seasonality were found to be important factors in the observed composition and distribution of ichthyofauna over the seascape. Although fish species were found to have a wide distribution and made use of multiple biotopes the average abundance of the species within the observed assemblages differed. Analysis of ichthyofauna species composition indicated that observed fish assemblages were homogeneous within five of the seven biotopes. Broader biotopes that were found to be significantly different between sample locations are characterised by a diverse complement of biotope subunits and are highly heterogeneous. Traits and diversity indices are important tools for assessing and comparing different systems within the seascape, both spatially and temporally. The classification of the biota into broader phylogenetic groups indicated a significant difference between biotopes. This is especially useful when detailed 4 analysis or species identification is not possible or the skill set is not available. Morphological traits included in this study informed on the physical structure of the communities present and in combination with substrate type provided insight into the three-dimensional structure of the biotope. Species diversity, abundance, density estimates and the Shannon-Weiner diversity index were found to be the most useful diversity indices characterising and comparing biotopes. This was less so for ichthyofauna. Significant differences in the number of species observed were evident only between consolidated and unconsolidated dominated substrates. Although there was no significant difference in the number of individuals observed, both the Shannon-Weiner and Simpson Diversity indices were able to highlight differences in the fish assemblages observed for the different biotopes. The data collected, although permitting a comprehensive baseline assessment of the benthic environment for two research stations within the SAEON Algoa Bay LTER Sentinel Site, is temporally limited. The ichthyofauna dataset used was small and it is understood that the addition of length-frequency analysis of observed ichthyofauna will benefit our understanding of the biotope use by infra- and supra-benthic fish species over their life history within the larger seascape. Seasonal differences were evident and it is expected that datasets spanning several years, including LTER stations within different marine ecosystems types, will provide valuable insights on system dynamics in the short and long term both spatially and temporally. This study is the first attempt to evaluate the methodology developed and data collected in the South African Environmental Observation Network’s, Elwandle Coastal Node as part of the Shallow Marine and Coastal Research Infrastructure Benthic Ecosystem Long-Term Ecological Research (BELTER) platform. Newly designed and developed sample equipment and a sampling regime allowed for the collection of data on a long-term basis. The study was successful in the description of the biotope and biotope subunits for two research stations in Algoa Bay. It permitted the construction of comprehensive species lists for both benthic sessile and sedentary biota and the associated ichthyofauna. The subset of data used was successful in reporting on both spatial and temporal change. This work demonstrates that in the absence of detailed species identifications, traits may be used to describe habitat and community structure and report on abiotic and biotic biotope characteristics. This study furthermore allowed for the comparison of a comprehensive suite of diversity indices highlighting indices that may be especially useful in routine BELTER reporting.Thesis (PhD) -- Faculty of Science, Ichthyology and Fisheries Science, 202

    Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species

    Get PDF
    Este artículo contiene 10 páginas, 3 figuras.The use of molecular tools to manage natural resources is increasingly common. However, DNA-based methods are seldom used to understand the spatial and temporal dynamics of species’ range shifts. This is important when managing range shifting species such as non-native species (NNS), which can have negative impacts on biotic communities. Here, we investigated the ascidian NNS Ciona robusta, Clavelina lepadiformis, Microcosmus squamiger and Styela plicata using a combined methodological approach. We first conducted non-molecular biodiversity surveys for these NNS along the South African coastline, and compared the results with historical surveys. We detected no consistent change in range size across species, with some displaying range stability and others showing range shifts. We then sequenced a section of cytochrome c oxidase subunit I (COI) from tissue samples and found genetic differences along the coastline but no change over recent times. Finally, we found that environmental DNA metabarcoding data showed broad congruence with both the biodiversity survey and the COI datasets, but failed to capture the complete incidence of all NNS. Overall, we demonstrated how a combined methodological approach can effectively detect spatial and temporal variation in genetic composition and range size, which is key for managing both thriving NNS and threatened species. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (part I)’.L.E.H. was supported by the Natural Environmental Research Council (grant no. NE/L002531/1) and research in South Africa was supported by the Newton Fund (grant no. ES/N013913/1).Peer reviewe

    Hyphenated LC-ICP-MS/ESI-MS identification of halogenated metabolites in South African marine ascidian extracts

    Get PDF
    Extracts of 13 species of marine ascidian collected in Algoa Bay were analyzed by LC-ICP-MS/ESI-MS. This technique allows parallel analysis of the molecular species and the presence of certain elements. The LC-ICP-MS/ESI-MS technique was used to target iodinated metabolites in this study. Three ascidian species afforded the known 3,5–diiodo-4-methoxyphenethylamine (12), which was confirmedby the isolation of this metabolite fromAplidium monile.MS also suggested the presence of theknown 3,5–dibromo-4-methoxyphenethylamine (10) and the new 3-bromo-5–iodo-4-methoxyphenethylamine (11) in the A. monile extract. The presence of the known 3,5-dibromotetramethyltyrosine (21) and the new 3-iodotetramethyltyrosine (23) in extracts of an unidentified Didemnum species was similarly proposed from MS evidence. This is the first report of the occurrence of iodinated metabolites in South African marine invertebrates.IS

    Unlocking the Diversity of Pyrroloiminoquinones Produced by Latrunculid Sponge Species

    Get PDF
    Sponges of the Latrunculiidae family produce bioactive pyrroloiminoquinone alkaloids including makaluvamines, discorhabdins, and tsitsikammamines. The aim of this study was to use LC-ESI-MS/MS-driven molecular networking to characterize the pyrroloiminoquinone secondary metabolites produced by six latrunculid species. These are Tsitsikamma favus, Tsitsikamma pedunculata, Cyclacanthia bellae, and Latrunculia apicalis as well as the recently discovered species, Tsitsikamma nguni and Tsitsikamma michaeli. Organic extracts of 43 sponges were analyzed, revealing distinct species-specific chemical profiles. More than 200 known and unknown putative pyrroloiminoquinones and related compounds were detected, including unprecedented makaluvamine-discorhabdin adducts and hydroxylated discorhabdin I derivatives. The chemical profiles of the new species T. nguni closely resembled those of the known T. favus (chemotype I), but with a higher abundance of tsitsikammamines vs. discorhabdins. T. michaeli sponges displayed two distinct chemical profiles, either producing mostly the same discorhabdins as T. favus (chemotype I) or non- or monobrominated, hydroxylated discorhabdins. C. bellae and L. apicalis produced similar pyrroloiminoquinone chemistry to one another, characterized by sulfur-containing discorhabdins and related adducts and oligomers. This study highlights the variability of pyrroloiminoquinone production by latrunculid species, identifies novel isolation targets, and offers fundamental insights into the collision-induced dissociation of pyrroloiminoquinones

    Purification and biochemical characterisation of a putative sodium channel agonist secreted from the South African Knobbly sea anemone Bunodosoma capense

    Get PDF
    Voltage gated ion channels have become a subject of investigation as possible pharmaceutical targets. Research has linked the activity of ion channels directly to anti-inflammatory pathways, energy homeostasis, cancer proliferation and painful diabetic neuropathy. Sea anemones secrete a diverse array of bioactive compounds including potassium and sodium channel toxins. A putative novel sodium channel agonist (molecular mass of 4619.7 Da) with a predicted sequence: CLCNSDGPSV RGNTLSGILW LAGCPSGWHN CKKHKPTIGW CCK was isolated from Bunodosoma capense using a modified stimulation technique to induce the secretion of the neurotoxin rich mucus confirmed by an Artemia nauplii bio-assay. The peptide purification combined size-exclusion and reverse-phase high performance liquid chromatography. A thallium-based ion flux assay confirmed the presence of a sodium channel agonist/inhibitor and purity was determined using a modified tricine SDS-PAGE system. The peptide isolated indicated the presence of multiple disulfide bonds in a tight β-defensin cystine conformation. An IC50 value of 26 nM was determined for total channel inhibition on MCF-7 cells. The unique putative sodium channel agonist initiating with a cystine bond indicates a divergent evolution to those previously isolated from Bunodosoma species

    Halogenated oxindole and indoles from the South African marine ascidian Distaplia skoogi:

    Get PDF
    The known 3,6-dibromoindole (1), 6-bromo-3-chloroindole (2) and 6-bromo-2-oxindole (3) were isolated from the marine ascidian (sea squirt) Distapia skoogi collected from Algoa Bay, South Africa. Standard spectroscopic techniques were used to elucidate the structures of 1-3. All three compounds were found to be moderately cytotoxic to metastatic MDA-MB-231 breast cancer cells

    Cytotoxic activity of marine sponge extracts from the sub-Antarctic Islands and the Southern Ocean

    Get PDF
    publisher versionOver the past 50 years, marine invertebrates, especially sponges, have proven to be a valuable source of new and/or bioactive natural products that have the potential to be further developed as lead compounds for pharmaceutical applications. Although marine benthic invertebrate communities occurring off the coast of South Africa have been explored for their biomedicinal potential, the natural product investigation of marine sponges from the sub-Antarctic Islands in the Southern Ocean for the presence of bioactive secondary metabolites has been relatively unexplored thus far. We report here the results for the biological screening of both aqueous and organic extracts prepared from nine specimens of eight species of marine sponges, collected from around Marion Island and the Prince Edward Islands in the Southern Ocean, for their cytotoxic activity against three cancer cell lines. The results obtained through this multidisciplinary collaborative research effort by exclusively South African institutions has provided an exciting opportunity to discover cytotoxic compounds from sub-Antarctic sponges, whilst contributing to our understanding of the biodiversity and geographic distributions of these cold-water invertebrates. Therefore, we acknowledge here the various contributions of the diverse scientific disciplines that played a pivotal role in providing the necessary platform for the future natural products chemistry investigation of these marine sponges from the sub- Antarctic Islands and the Southern Ocean. Significance: This study will contribute to understanding the biodiversity and geographic distributions of sponges in the Southern Ocean. This multidisciplinary project has enabled the investigation of marine sponges for the presence of cytotoxic compounds. Further investigation will lead to the isolation and identification of cytotoxic compounds present in the active sponge extracts.University of Cape Town; South African Medical Research Council; National Research Foundation (South Africa); CANSA; Rhodes University; Department of Science and Technology; Department of Environmental Affairs; SANA
    corecore