631 research outputs found
Nonlinear evolution of initially sine-like wedge acoustic waves
In this paper the nonlinear behaviour of antisymmetric
wedge acoustic waves propagating along the tip of a sharp
elastic wedge is investigated theoretically. The nonlinear
evolution equation is derived taking into account
geometrical-acoustics approximation for wedge waves. In
contrast to the case of surface acoustic waves for which
the quadratic nonlinearity dominates, the lowest order of
nonlinearity in this equation is cubic. For arbitrary
propagation distances, the numerical solution taking into
account 1O interacting wave harmonics has been carried
out. The results show that an initially sine-like
antisymmetric wedge wave distorts to a wave of
trapezoidal form propagating with changed phase velocity
Description of a domain by a squeezed state in a scalar field theory
The author attempted to describe a domain by using a squeezed state in
quantum field theory. An extended squeeze operator was used to construct the
state. In a scalar field theory, the author described a domain that the
distributions of the condensate and of the fluctuation are Gaussian. The
momentum distribution, chaoticity and correlation length were calculated. It
was found that the typical value of the momentum is about the inverse of the
domain size, and that the chaoticity reflects the ratio of the size of the
squeeze region to that of the coherent region. The results indicate that the
quantum state of a domain is surmised by these quantities under the assumption
that the distributions are Gaussian. As an example, this method was applied to
a pion field, and the momentum distribution and the chaoticity were shown.Comment: 10 pages, 5 figures, a typographical error in the reference is
correcte
The Chromatin Remodeler BPTF Activates a Stemness Gene-Expression Program Essential for the Maintenance of Adult Hematopoietic Stem Cells
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC âstemnessâ genes. These results demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of âstemnessâ gene-expression programs and proper function of adult HSCs. Wang and colleagues show that a chromatin remodeler, BPTF, sustains appropriate functions of hematopoietic stem/progenitor cells (HSPCs). BPTF loss causes bone marrow failure and anemia. The authors further define a BPTF-dependent gene-expression program in HSPCs, which contains key HSC stemness factors. These results demonstrate an essential requirement of the BPTF-associated chromatin remodelers for HSC functionality and adult hematopoiesis
Phantom Cosmology with Non-minimally Coupled Real Scalar Field
We find that the expansion of the universe is accelerating by analyzing the
recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates
that the equation of state of the dark energy might be smaller than -1,which
leads to the introduction of phantom models featured by its negative kinetic
energy to account for the regime of equation of state parameter .In this
paper the possibility of using a non-minimally coupled real scalar field as
phantom to realize the equation of state parameter is discussed.The main
equations which govern the evolution of the universe are obtained.Then we
rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra
Explicit asymptotic modelling of transient Love waves propagated along a thin coating
The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel Universityâs âBRIEFâ research award
The Coherent State Representation of Quantum Fluctuations in the Early Universe
Using the squeezed state formalism the coherent state representation of
quantum fluctuations in an expanding universe is derived. It is shown that this
provides a useful alternative to the Wigner function as a phase space
representation of quantum fluctuations. The quantum to classical transition of
fluctuations is naturally implemented by decohering the density matrix in this
representation. The entropy of the decohered vacua is derived. It is shown that
the decoherence process breaks the physical equivalence between vacua that
differ by a coordinate dependent phase generated by a surface term in the
Lagrangian. In particular, scale invariant power spectra are only obtained for
a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with
corrections and significant new calculation
Decoherence of molecular wave packets in an anharmonic potential
The time evolution of anharmonic molecular wave packets is investigated under
the influence of the environment consisting of harmonic oscillators. These
oscillators represent photon or phonon modes and assumed to be in thermal
equilibrium. Our model explicitly incorporates the fact that in the case of a
nonequidistant spectrum the rates of the environment induced transitions are
different for each transition. The nonunitary time evolution is visualized by
the aid of the Wigner function related to the vibrational state of the
molecule. The time scale of decoherence is much shorter than that of
dissipation, and gives rise to states which are mixtures of localized states
along the phase space orbit of the corresponding classical particle. This
behavior is to a large extent independent of the coupling strength, the
temperature of the environment and also of the initial state.Comment: 7 pages, 4 figure
Ponderomotive entangling of atomic motions
We propose the use of ponderomotive forces to entangle the motions of
different atoms. Two situations are analyzed: one where the atoms belong to the
same optical cavity and interact with the same radiation field mode; the other
where each atom is placed in own optical cavity and the output field of one
cavity enters the other.Comment: Revtex file, five pages, two eps figure
Recent Experimental Tests of Special Relativity
We review our recent Michelson-Morley (MM) and Kennedy-Thorndike (KT)
experiment, which tests Lorentz invariance in the photon sector, and report
first results of our ongoing atomic clock test of Lorentz invariance in the
matter sector. The MM-KT experiment compares a cryogenic microwave resonator to
a hydrogen maser, and has set the most stringent limit on a number of
parameters in alternative theories to special relativity. We also report first
results of a test of Lorentz invariance in the SME (Standard Model Extension)
matter sector, using Zeeman transitions in a laser cooled Cs atomic fountain
clock. We describe the experiment together with the theoretical model and
analysis. Recent experimental results are presented and we give a first
estimate of components of the parameters of the SME matter
sector. A full analysis of systematic effects is still in progress, and will be
the subject of a future publication together with our final results. If
confirmed, the present limits would correspond to first ever measurements of
some components, and improvements by 11 and 14 orders of
magnitude on others.Comment: 29 pages. Contribution to Springer Lecture Notes, "Special Relativity
- Will it survive the next 100 years ?", Proceedings, Potsdam, 200
- âŠ