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ABSTRACT 

In this paper the nonlinear behaviour of antisymmetric 
wedge acoustic waves propagating along the tip of a sharp 
elastic wedge is investigated theoretically. The nonlinear 
evolution equation is derived taking into account 
geometrical-acoustics approximation for wedge waves. In 
contrast to the case of surface acoustic waves for which 
the quadratic nonlinearity dominates, the lowest order of 
nonlinearity in this equation is cubic. For arbitrary 
propagation distances, the numerical solution taking into 
account I O  interacting wave harmonics has been carried 
out. The results show that an initially sine-like 
antisymmetric wedge wave distorts to a wave of 
trapezoidal form propagating with changed phase velocity. 

INTRODUCTION 

Along the tip of an elastic solid wedge, a special kind of 
mechanical vibration can propagate which is localised near 
the tip 1-3. Such vibrations, usually called wedge acoustic 
waves, have a number of practical applications, especially 
in nondestructive testing of special engineering materials 
and in nonlinear signal processing  device^^.^. The most 
interesting for applications are antisymmetric wedge 
waves, in particular waves in sharp-angle wedges (Fig. 1) 
for which the velocities of the antisymmetric modes can be 
very low. 

Nonlinear behaviour of wedge acoustic modes is a 
matter of special interest because of the high concentration 
of elastic energy near the wedge tip and the absence of 
dispersion in ideal (nontruncated) wedges. 

Earlier theoretical consideration of nonlinear effects in 
wedge acoustic waves was carried out by two of us 
using a perturbation theory which is valid [or relatively 

1051-0117/93/0000-0765 $4.00 0 1993 IEEE 

short propagation distances. However, it is important to 
investigate the nonlinear behaviour of wedge waves for 
arbitrary distances, as has been done in the last decade for 
Rayleigh surface waves 7-9, Love waves lo and Bleustein- 
Gulyaev waves '. 

In the present work we consider the nonlinear 
behaviour of initially sine-like antisymmetric wedge 
acoustic waves using the nonlinear evolution equation 
approach. This takes into account all the interactions 
between a fixed number of harmonics and describes the 
evolution of wedge-wave profiles over large propagation 
distances. 

NONLINEAR EVOLUTION EQUATION 

In the geometrical-acoustics approximation for wedge 
acoustic waves considered here, the nonlinear wave 
equation has the following simplified form 6 :  

2 a w  a2 a w  2 a w  2 
-[ah (x)(- +CY--)] + ph(x)-- + 
ay Q 2  ar2 at2 

( 1 )  

Here w is the displacement of the mid-plane of the wedge 
from equilibrium, h(x) is the local thickness of the wedge, 
a = E/12(1-02) = pcp2/12, where E, ts and p are the 
Young's modulus, Poisson ratio and mass density of the 
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wedge material, %= 2 q ( l - c t 2 / ~ 1 ~ ) ~ / ~  is the speed of a 
longitudinal wave in a thinglate (the lowest symmetric 
Lamb mode), b = 0.4f(q/cl) is the quantity proportional 
to the nonlinear constant of the fourth order f responsible 
for the term f d i j ( u i ~ ) ~  in the expansion of the elastic 
energy of an isotropic solid up to the fourth order in the 
strain tensor lo , y is the coordinate along the tip, x is the 
coordinate directed inwards dong the midplane of the 
wedge, and 0 is the wedge angle. For the sake of 
simplicity we take into account only one nonlinear 
modulus f which is supposed to be much bigger than 
other nonlinear moduli of the fourth, third- and second 
orders. Thus, we do not consider here the effect of 
geometrical nonlinearity which may be predominant in real 
slender wedges 12. 

We recall that in the framework of the geometrical 
acoustic approximation the linear solution for the wedge 
modes has the form 

00 I xW(kx)dx for both sides. Then , simplifying the linear 
0 
part of the resulting equation, we obtain 

0 0 0 0  b 
a 

6--02 x3 k2A(k,s2y)W(kx)eik6'-t)dk* 
0 --a, 

00 

{ / (-ik3)*A(k,s2y)W(kx)eik6-ct)dk}2dx - 
WO cos[L(x)kpx/O - -m w(x,y,t) = 

( k p x  / o)[t(x)]"2 
m 00 n sin'lM(x) 4 4 1  exp[i(.(3 k,,y/nO - at)], (2) b 

3--821 x3{ J k2*A(k,&2y)W(kx)eikbY"t)dk}2* 
a 

where L(x) = [d3(20/kpx - d3/n2] , 0 --a, 

M(x) = (1 -43kpx/n20), 
00 

and n = 1,2 3, ... is the mode number. The velocities of 
antisymmetric wedge modes c = a/k are determined by --oo 
the simple expression 

k4A(k,&Zy)*W(kx)eikb-ct)dkdx, ( 5 )  

Using the convolution theorem, it is easy to derive from ( 5 )  
the following nonlinear evolution equation: (3) c = c p 0 / 4 3  . 

Note that the geometrical-acoustics approximation for the 
case under consideration is valid for kpx/O >> 1. In this 
approximation, the wavefield does not penetrate into the iQ- = Z(l',l'',k)A(k-I')A(1'-l")A(l")dl'dl". (6) 

0 0 0 0  
& 

region x<xt where determines the ray- du 
turning point or the 

Let us seek the solution of (1) in the form 
00 

Here Q = xW2(kx)dx is the quantity proportional to 
00 

0 
w6''x't) = *" s2y) w(kx) eikOr-ct) dk ' (4) the energy flow of a wedge wave, and the kernel Z(l',l",k) 

-00 is determined by the expression 
where c = o/k is the velocity of a chosen wedge mode, 
A&) is the spectral density satisQing the condition A(-k) 
= A*(k), and W(kx) is the distribution of transverse 
displacements within a wedge acoustic mode and is 
determined from (2) rewritten in the form w(x,y,t) = 

the condition W(-kx) = W W )  . 
Now, we substitute Eqn (4) into (1) and use 

36 
4a 

Z(l',l",k) = -02(k-1')"1'-~")2(l'')3(21'-l'')* 

W&x) exp[i(kywt)]. As follows from (2), W W )  satisfies 00 

k-3 / x3 W(kx)W((k-l')x)W((I'-l")x)W(l"x)dx. (7) 
0 
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One should note that Eqn (6) has a form similar to that of 
the evolution equation for Bleustein-Gulyaev waves l1 
where cubic nonlinearity is also paramount. 

For small propagation distances y , the nonlinear 
evolution equation (6) has a power series solution which 
predlcts the same growth of the third harmonic of a 
sinusoidal wedge wave as is predicted by the direct 
perturbational approach6. Indeed, if the spectral density 
A@,&%) is described by 

where 6(k-ko) is Dirac's delta-function, and ko = o/c is 
the wave-number of the first wedge harmonic, then 
substituting (8) into (6) and neglecting terms proportional 
to A inside the integrals, one obtains, using the properties 
of the delta-function, the following equation: 

dA 
iQ- = Z ( 2 b  3 ,  k~ 3kg)R3 . 

& 
(9) 

After change of variable 
coincides with the 

The solution of the evolution equation (6) for arbitrary 
values of y can be obtained numerically. For this purpose, 
it is useful to transform the equation to facilitate carrying 
out the integration only over positive values of I' and I" *. 

Splitting the limits of the integration into -00 to 0 and 0 
to 00 and using the identity A(-k) = A*&), one may 
rewrite equation (6) in the form 

OD00 dA 
iQ- = [Z(-l',-l",k)A(k+l')A*(I'-I")A*(I") + 

4) 0 0  
Z( -l', l", k) A(k+l') A* (l'+I")A( 1") + 

(10) 
Z(I',-l",k)A(k-l')A(l'+l'')A*(l'') + 

Z( l', l",k)A(k-I')A( I'-l'')A( 1")ldl'dl" 

Eqn (10) can then be rewritten in terms of positive values 
of the transform variables. For brevity we show the results 
only for the first integral in (10): 11 (the other integrals - 
12.I3,Iq-are transformed in the same way): 

Q1 I' 
I,=JdZ'[l Z(-l', -l",~)A(k+l')A*(~'-l'')A*(l'')dl'' + 

0 0  

a0 

Z(-l',-l",k)~(k+l')A(l"-I')A*(l")dl''] . (1 1) 
I' 

Henceforth, we restrict attention only to periodic 
waveforms. The Fourier integral (4) may be replaced by 
the Fourier series: 

where Cn and Dn are real and imaginary parts of the 
Fourier coefficients An respectively: An = Cn + iDn . 
Taking this into account and using (1 1) along with the 
corresponding expressions for the integrals 12, I3 and 14, 
one can derive from (6) the infinite system of nonlinear 
differential equations versus Cn and Dn : 

dD 
dY =F2(C, D) 

Here F1(C, D) and F2(C, D) are cubically-nonlinear 
matrix functions of vectors C and D with the components 
Cp and Dp respectively, p=1,2,3, ...CO (these functions are 
too bulky to be written here), Y=bygs* is a 
nondimensional distance of propagation, g=(3/4)b/a, and a 
small parameter E is written in the form E=koAch , 
where A& is the characteristic amplitude of the wave. 

NUMERICAL, CALCULATIONS AND DISCUSSION 

The numerical solution of the system of nonlinear 
equations (13) has been camed out by the modified 
Eulerian method with double precision. The system (13) 
was truncated, retaining non-zero Cp, Dp only for plN,  
with initial conditions at Y=O taken as the sine-like form: 
D1= 1, D2 .... DN = 0 and C1 .... CN = 0. Because the 
bulkiness of the equations (13) results in much 
computation time for every unit along Y, the number of 
harmonics N has been chosen rather small (N=lO). For 
the same reason, the number of terms in the process of 
numerical calculation of the integrals in kernels (7) inside 
F1 and F2 has been chosen to be Nint = 25. The unit of 
iteration AY along the path of propagation (AY=0.005) 
was chosen as a compromise between the total calculation 
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time and avoiding instabilities in numerical calculations at 
certain values of Y, where all wave harmonics had 
explosion-like growth. The bigger the AY step, the lower 
was the value of Y at which the instability appeared. For A 
Y4.005 the instability appeared at Y=1.2. As calculations 
show, this distance was enough to demonstrate visible 
distortion of the initial sine-like wave profile. 

Fig.2 shows the amplitudes of the third, fifth and 
seventh harmonics as functions of dimensionless distance 
Y. It is easily to see that for small Y the third harmonic 
grows linearly with Y (in agreement with the earlier 
results obtained by a perturbation approach ), while the 
higher harmonics grow in a more complicated manner. 

The distorted wave profiles near the tip plotted using 
the calculated values of Cn and Dn are displayed in Fig. 
3 for several values of Y. One can see that, in contrast 
to the case of surface acoustic waves of Rayleigh type for 
which the quadratic nonlinearity dominates, the distorted 
wave profiles of wedge waves tend to the trapezoid-like 
form rather than to the saw-tooth form typical for surface 
waves. Another difference from the surface acoustic wave 
case is that distorted wedge waves possess a small change 
in velocity caused by self-interaction effects. 

REFERENCES 

1. Lagasse, P.E. Electronics Letters, 8 (1972) 372-373. 
2. Maradudin, A.A., Wallis, R.F., Mills, D.L. & Ballard, R.L. 

3. Moss, S.L., Maradudin, A.A. & Cunningham, S.L. Phys. Rev. 

4. K j ~ o v ,  V.V. Proc. II International ~ y m p .  on S u f i c e  waves 
in Solids and Layered Structures, Varna. Bulgaria, 1989; 
World Scientific, Singapore (1990). p. 174-189. 

5. Adler, R., Hoskins, M., Datta, S .  & Hunsinger, B. ZEEE 
Trans. on Sonics and Ultrasonics, 26 (1 979) 345-347. 

6. Krylov, V.V. & Parker, D.F. Wave Motion, 15 (1992) 185- 
200. 

7. Kalyanasundaram, N. Inr. J. Eng. Sci., 19 (1981) 279-286. 
8. Parker, D.F. Inr. J. Eng. Sci.. 26 (1  988) 59-75. 
9. Maradudin, A.A. & Mayer, A.P., in: Nonlinear Waves in Solid 

eds.: Boardman, A.D., Twardowski, T. & 

Phys.RW. B6(1972) 1106-1111. 

B8 (1973) 2999-3008. 

State Physics, 
Bertolotti, M.; Plenum, New York ( I  990), p. 113-161. 

10 Kalyanasundaram, N. Int. J. Eng. Sci. 19 (1981) 287-293. 
11. Mayer, A.P. Int. J. Eng. Sci. 29 (1991) 999-1004. 
12. Mayer, A.P., Mozhaev, V.G., Krylov, V.V. & Parker, D.F. 

Proc. NATO Advanced Research Workshop and Emil 
Warburg Symposium on Nonlinear Coherent Structures in 
Physics and Biology, Bayreuth, Germany, 1993. 

Y 
/ 

Fig.1. Geometry of the problem 
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Fig.3. Distorted wave profiles; e 
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