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SUMMARY
Self-renewal and differentiation of adult stem cells are tightly regulated partly through configuration of chromatin structure by

chromatin remodelers. Using knockout mice, we here demonstrate that bromodomain PHD finger transcription factor (BPTF), a

component of the nucleosome remodeling factor (NURF) chromatin-remodeling complex, is essential for maintaining the population

size of hematopoietic stem/progenitor cells (HSPCs), including long-term hematopoietic stem cells (HSCs). Bptf-deficient HSCs are

defective in reconstituted hematopoiesis, and hematopoietic-specific knockout of Bptf caused profound defects including bone marrow

failure and anemia. Genome-wide transcriptome profiling revealed that BPTF loss caused downregulation of HSC-specific gene-

expression programs, which contain several master transcription factors (Meis1, Pbx1, Mn1, and Lmo2) required for HSC maintenance

and self-renewal. Furthermore, we show that BPTF potentiates the chromatin accessibility of key HSC ‘‘stemness’’ genes. These results

demonstrate an essential requirement of the chromatin remodeler BPTF and NURF for activation of ‘‘stemness’’ gene-expression

programs and proper function of adult HSCs.
INTRODUCTION

Appropriate self-renewal and differentiation of adult stem

cells are essential for tissue homeostasis and are tightly

controlled by various cellular and molecular mechanisms,

including the dynamic regulation of chromatin structure

by ATP-dependent chromatin-remodeling complexes (Ka-

doch and Crabtree, 2015; Wang et al., 2007). These remod-

elers use energy produced fromATP hydrolysis to configure

nucleosomal positioning and modulate DNA accessibility.

Such a process ensures fidelity of crucial gene-expression

programs during developmental processes such as lineage

specification. In support of this pathway contributing to

cell fate determination, somatic mutation of chromatin re-

modeler genes is common in human disease, including

cancer (Kadoch and Crabtree, 2015; Wang et al., 2007).

Bromodomain PHD finger transcription factor (BPTF) is a

core and largest component of the conserved, multi-

subunit nucleosome remodeling factor (NURF) complex

(Landry et al., 2008; Ruthenburg et al., 2011). NURF

loosens condensed chromatin to promote DNA accessi-

bility and target gene activation (Ruthenburg et al., 2011;

Schwanbeck et al., 2004; Wysocka et al., 2006). While

global knockout of Bptf inmice leads to lethality on embry-

onic day 8.5, demonstrating its requirement for early

development (Landry et al., 2008), clinical studies reveal

loss-of-function mutation of BPTF in individuals with
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syndromic neurodevelopmental anomalies (Stankiewicz

et al., 2017). Furthermore, BPTF was recently shown to be

critical for themaintenance or differentiation ofmammary

gland stem cells (Frey et al., 2017), melanocytes (Dar et al.,

2016; Large et al., 2016), and Tcells (Landry et al., 2011;Wu

et al., 2016). BPTF contains two motifs in its C terminus, a

PHD finger and a bromodomain that bind to histone H3

lysine 4 trimethylation (H3K4me3) and histone acetyla-

tion, respectively (Chi et al., 2010; Ruthenburg et al.,

2011; Wysocka et al., 2006). Deposition of these two mod-

ifications occurs partly via the histone methyltransferase

MLL/KMT2A and associated histone acetyltransferases

(Dou et al., 2005).While previous works detail the essential

role for KMT2A in regulation of hematopoietic and

neuronal stem cells (Artinger et al., 2013; Jude et al.,

2007; Lim et al., 2009), the specific contributions of BPTF

remain undefined in this process.

Using knockout mice, we here show BPTF as a crucial

chromatin regulator of hematopoietic stem cells (HSCs).

Reconstitution assays demonstrate that Bptf-null HSCs ex-

hibited the decreased repopulating capacity, causing severe

hematopoietic defects. Our genomic profiling shows that

ablation of BPTF in hematopoietic stem/progenitor cells

(HSPCs) leads to decreased expression of an HSC-specific

gene-expression program, which includes a master tran-

scription factor (TF) regulatory node (Meis1, Pbx1, Mn1,

and Lmo2) known to be crucial for HSC self-renewal and
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Figure 1. Maintenance of Adult HSPCs Including LT-HSC Requires BPTF
(A) Bptf expression in hematopoiesis (see also Figures S1A and S1B).
(B and C) Genotyping (B) and RT-PCR (C; n = 3 biological replicates) confirm deletion of the Bptf exon 2 in total bone marrow (BM) 1 week
after cre induction. w, wild-type; f, floxed; D, deleted (BptfcKO).
(D and E) FACS (D) and summary (E) of percentages of the LSK and LT-HSC cells in the BM, 4 weeks after cre induction in the BptfcKO (f/f; cre,
n = 5mice) or control littermates with Bptff/f (f/f) orMx1-cre (cre) alone (n = 4mice). Numbers in (D) indicate the percentage of gated cells.
Plots in (E) are mean ± SD, with statistical analysis defined by two-tailed Student’s t test: ns, not significant; *p < 0.05; **p < 0.01.
function.We also find that BPTF potentiates the chromatin

accessibility of these HSC TF genes. Collectively, our

results support a vital requirement of the BPTF chromatin

remodeler for the maintenance of adult HSPCs and for

the activation of a gene transcription program essential

for HSC functions.
RESULTS

Maintenance of Adult HSPCs, Including Long-Term

HSCs, Requires Bptf Expression

Using transcriptome datasets of hematopoiesis (Bock et al.,

2012; Seita et al., 2012), we found Bptf preferentially ex-

pressed in the primitive HSPC compartment (Figures 1A,

S1A, and S1B). To study the role of BPTF in HSPCs, we pro-

duced inducible knockout mice (Bptfflf;Mx1-cre) designed

to ablate Bptf from the bone marrow (BM) upon activation

of Mx1-cre by polyinosinic-polycytidylic acid (pIpC).

We verified efficient deletion (>95%) of Bptf in the BM
676 Stem Cell Reports j Vol. 10 j 675–683 j March 13, 2018
(i.e., BptfcKO) via genotyping and RT-PCR to confirm our

model (Figures 1B and 1C). While Mx1-cre is widely used

for achieving inducible gene deletion in HSPC, it is also

associated with pIpC-caused interferon activation and

cre-induced potential toxicity. To address these issues, we

produced littermate controls with Bptfflf or Mx1-cre alone

and subjected them to pIpC administration. By fluores-

cence-activated cell sorting (FACS) and 4 weeks after cre in-

duction, we observed a significantly reduced total number

of lineage�/SCA-1+/c-KIT+ (LSK) cells and long-term (LT)-

HSCs (LSK/CD150+/CD48�, Figure 1D) in the BMof BptfcKO

mice, relative to controls (Figures 1D and 1E). This result

shows a role for BPTF in the maintenance of primitive

HSPCs, including LT-HSCs, in adult mice.
BPTF Sustains the Self-Renewal and Repopulating

Capacity of HSCs in a Cell-Autonomous Mechanism

Next, we sought to determine whether BPTF regulates

HSC function in a cell-autonomous manner. Using a
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Figure 2. BPTF Is Essential for the Maintenance and Reconstitution Function of HSCs in a Cell-Autonomous Manner
(A and B) Summary (A) and representative colony (B; scale bar, 1 mm) in colony-forming unit assays with 300 of the Bptff/f or BptfcKO

(f/f; cre) LSK cells sorted 7 days after cre induction (n = 3 independent experiments; *p < 0.05; **p < 0.01; see also Figure S1C).
(C) Outline of competitive reconstitution assay via BMT.
(D) Percentage of donor-derived CD45.2+ cells from BptfcKO (blue; n = 8 mice) and control mice, either Bptff/f (red; n = 8) or Bptf-/w

(green; n = 6), in peripheral blood of recipients at the indicated time points. Error bars denote SE.
(E) FACS of donor-derived CD45.2+ cells, either from Bptff/f or BptfcKO mice, in peripheral blood 5 weeks after cre induction.
(F–H) Summary (F and G; n = 2 mice at each time point) and FACS (H) of donor-derived CD45.2+ cells, either from control (Bptff/f) or BptfcKO

mice, in the BM LSK and LT-HSC populations 8 weeks after cre induction (see also Figure S1D).
(I and J) Percentage (I; n = 4 mice) and FACS (J) of donor-derived CD45.2+ cells from Bptff/f or BptfcKOmice in the indicated BM populations
8 weeks after cre induction (see also Figures S1E and S1F).
colony-forming assay with sorted LSK populations, we

found that Bptf-ablated cells produced significantly fewer

and smaller colonies relative to control (Figures 2A and

2B). Similar results were seen in LSK cells with short hairpin
RNA-mediated knockdownofBptf (Figure S1C).We also per-

formed competitive bonemarrow transplantation (BMT) to

test the reconstitution capacity of Bptf-null HSCs. Here,

total BM cells from CD45.2+, Bptff/f;Mx1-cre+ mice were
Stem Cell Reports j Vol. 10 j 675–683 j March 13, 2018 677
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Figure 3. RNA-Seq Profiling Identifies a BPTF-Dependent Gene-Activation Program that Includes Several Key Master Regulators
of HSCs
(A) IGV view showing the RNA-seq profile of Bptf in the Bptff/f and BptfcKO (f/f; cre) LSK cells after pIpC treatment. For cross-sample
comparison, the scale of profile is normalized with total sequencing read counts.
(B) The MA plot of RNA-seq transcriptome profiles in the BptfcKO versus Bptff/f LSK cells after pIpC treatment. The x axis shows the average
gene expression (log2-transformed) in control and knockout samples, while the y axis shows the indicated fold change by log2 trans-
formation. Each dot represents a gene. The red and green colors mark genes that show significant differential expression, with a cutoff of
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(C) GO analysis reveals the indicated gene pathway among the transcripts downregulated in BptfcKO LSK cells relative to Bptff/f controls
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(D) RNA-seq identifies genes downregulated (left; green) or upregulated (right; red) in BptfcKO LSK cells, relative to Bptff/f controls.
Base Mean denotes the average RNA-seq count.

(legend continued on next page)
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mixed at a 1:1 ratio with wild-type competitor cells from

CD45.1+ mice, then used as donor for BMT to lethally irra-

diated recipients (Figure 2C). Cells from Bptff/f or heterozy-

gous Bptff/w;Mx1-cre+ mice were used as control in BMT.

When we observed stable chimerism in all cohorts 8 weeks

after BMT (Figure 2D), we induced Bptf deletion and

observed a gradual decline in the contribution of the

Bptf-null donor cells to peripheral blood (Figures 2D and

2E). Meanwhile, the percentages of control donor cells

remained stable after pIpC injection, suggesting that one

Bptf allele is sufficient to sustain HSC function and hemato-

poiesis (Figures 2D and 2E).

We also examined the LSK and LT-HSC populations in re-

cipients in the reconstitution assay (Figure S1D), and found

a significantly decreased contribution of BptfcKO but not

control donor cells to these primitive compartments (Fig-

ures 2F and 2G). Eight weeks after cre induction, the pres-

ence of Bptf-ablated donors decreased to nearly undetect-

able levels in HSCs and differentiated cell compartments

in the BM or spleen (Figures 2H–2J, S1E, and S1F). Loss of

the BptfcKO HSCs may occur through failure to maintain

HSPCs’ cell identity, increased apoptosis, or their combina-

tion. We assessed LSK cells 3 weeks after cre induction and

did not detect a significant increase in apoptosis in BptfcKO

mice relative to control (Figures S1G and S1H). Together,

these results show a cell-autonomous role of BPTF in sus-

taining the repopulating function of HSCs.

BPTF Activates an HSC-Specific Gene-Expression

Program, Including a ‘‘Stemness’’ Regulatory Node

that Comprises Several Master Regulators of HSCs

To define the gene-regulatory role of BPTF inHSPCs, we per-

formed RNA sequencing (RNA-seq) to profile transcrip-

tomes of the LSK cells sorted from BptfcKO and Bptff/f mice

10 days after cre induction (Figure S2A). As expected, there

was a lack of RNA-seq reads mapped to the Bptf exon 2 in

BptfcKO cells due to cre-mediated deletion (Figure 3A). This

produced the out-of-frame unstable Bptf transcripts, with

reduced overall expression when compared with control

(Figure 3B, Bptf). BptfcKO and Bptff/f LSK cells expressed

comparable levels of cKit, an LSK marker (Figure 3B, cKit),

and comparison of their RNA-seq profiles identified 407

downregulated and 230 upregulated transcripts due to Bptf

ablation (with adjusted p < 0.05 and fold change > 1.5;

Figure 3B [inset] and Table S1). Gene ontology (GO) and

Ingenuity Pathway Analysis revealed the transcription regu-

lation and cell adhesion-related pathways among the most

downregulated ones upon BPTF loss (Figures 3C and 3D),
(E–H) GSEA reveals enrichment of the indicated signature, either LSK ‘
ribosomal genes (H) in BptfcKO versus Bptff/f LSK cells after cre induc
(I) qRT-PCR using the BptfcKO versus Bptff/f LSK cells sorted on day 10
and normalized to b-actin and Bptff/f cells. *p < 0.05; **p < 0.01.
including a TF regulatory node that consists of Meis1,

Pbx1, Mn1, and Lmo2 (Figure S2B). Previous studies show

these TFs as master regulators of HSC by establishing the

gene-regulatory circuits essential for HSC self-renewal and

identity (Heuser et al., 2011; Wang et al., 2005; Wilson

et al., 2010). Consistently, when we related our RNA-seq

data to the previously reported HSC gene sets by gene set

enrichment analysis (GSEA), we found that, relative to

BptfcKO, Bptff/f LSK cells are enriched with LSK signature

genes (Chambers et al., 2007; Krivtsov et al., 2006) and

those sustained by a crucial HSC regulator, KMT2A

(Artinger et al., 2013) (Figures 3E–3G). Also, the AP1 com-

plex TFs (e.g., Fos and Jun) showed decreased expression in

BptfcKO LSK cells (Figure 3D, left). GO and GSEA also found

the biosynthesis- and translation-related pathways among

the most upregulated ones in BptfcKO cells (Figures 3H and

S2C–S2E), a phenomenon similar to that reported in the

KMT2A-null HSPCs (Artinger et al., 2013). Themost upregu-

lated genes include many aminoacyl-tRNA synthetase and

solute carrier protein genes (Figure 3D, right). By RT-PCR,

we validated downregulation of Pbx1, Meis1, Mn1, and

Lmo2 upon Bptf loss in LSK cells, while expression of Myc,

cKit, and Cd34 was unchanged (Figure 3I). Thus, we identi-

fied a BPTF-dependent gene-expression program that

includes several master TFs of HSCs, which supports a role

of BPTF in defining HSCs’ cellular identity.

BPTF Potentiates DNA Accessibility at the HSC

‘‘Stemness’’ Genes

To test whether BPTF directly targets the ‘‘stemness’’ genes

identified by RNA-seq, we assessed BPTF binding by chro-

matin immunoprecipitation (ChIP). We used HPC-7 cells

because ChIP requires large cell numbers, which prevents

the use of primary HSPCs, and HPC-7 cells were previ-

ously used as an HSPC mimic to map the genomic bind-

ing of HSC regulators (Wilson et al., 2010). ChIP-

sequencing (ChIP-seq) analysis revealed high H3K4me3

at the promoters of ‘‘stemness’’ genes such as Meis1,

Pbx1, and Lmo2 (Figures 4A–4C and S3A, top panel),

providing a putative platform for BPTF binding. Unfortu-

nately, BPTF ChIP-seq failed due to inadequate pull-down

of DNA, but conventional ChIP-qPCR showed significant

binding of BPTF to the tested promoter loci at ‘‘stemness’’

genes, compared with the negative control (Figure 4D).

Because BPTF/NURF modulates nucleosomal positioning,

we also used the assay for transposase-accessible chro-

matin followed by sequencing (ATAC-seq) to measure

DNA accessibility in BptfcKO versus Bptff/f LSK cells after
‘stemness’’ genes (E and F), a KMT2A-sustained gene network (G), or
tion (see also Figures S2D and S2E).
after cre induction. Data are mean ± SD (n = 3 biological replicates)
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Figure 4. BPTF Potentiates Chromatin Accessibility at HSC ‘‘Stemness’’ Genes
(A–C) ChIP-seq profiles of H3K4me3 and input at the indicated genes in HPC-7 cells, and their ATAC-seq profiles in Bptff/f versus BptfcKO

LSK cells 7 days after cre induction. For cross-sample comparison, the scales of profiles are normalized with total sequencing read counts
(see also Figure S3A).
(D) BPTF ChIP at the indicated gene promoter in HPC-7 cells. Fold of enrichment in signals, shown as mean ± SD (n = 3 biological
replicates), was normalized to input and to a control locus (Chr8_Int). *p < 0.05; **p < 0.01.
(E) Comparison of ATAC-seq data in BptfcKO versus Bptff/f LSK cells shows a significant reduction of ATAC-seq signals at the promoters of
genes showing downregulation due to BPTF loss, relative to genome background. Plotted at y axis are log2-transformed ratios of promoter-
associated ATAC-seq reads between two samples, either at all genes (left) or at the top 500 downregulated genes in BptfcKO LSK cells
(right), relative to Bptff/f control (see also Figures S3B and S3C).

(legend continued on next page)
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cre induction (Figure S3B). Upon Bptf ablation, we did not

see a dramatic change in global ATAC-seq signals (Fig-

ure S3C) but observed significantly reduced DNA accessi-

bility at the promoters of downregulated genes (Figure 4E)

such as Meis1, Pbx1, Fos, and Lmo2 (Figures 4A–4C and

S3A). We also observed decreased ATAC-seq signals at

putative distal or intragenic enhancers of these TF genes

(Figures 4A–4C and S3A). Together, these genomic data

support crucial roles of BPTF in potentiating DNA accessi-

bility and appropriate expression of key HSC TF genes.

Further work is needed to firmly define genomic binding

of BPTF in HSPCs.

Hematopoietic-Specific Loss of BPTF Leads to Bone

Marrow Failure, Anemia, and Leukopenia

Given the impaired function of BptfcKO HSCs, we predicted

that lineage-committed populations in BptfcKO mice would

be affected. Four weeks after Bptf deletion, the bones from

BptfcKOmice appeared pale and showed significant decrease

in the total BM cell number when compared with control

(Figure 4F). Moreover, we observed that the BptfcKO mice

possessed smaller spleens relative to control, which sug-

gests a defect in splenic B cell development (Figure 4G).

FACS of total splenic cells confirmed our observation,

with a significant reduction in the B220+ cells (Figure S4A).

Furthermore, complete blood counts revealed anemia,

leukopenia, and granulocytopenia in BptfcKO mice, pheno-

types that arise from the dysfunctional repopulation capac-

ity of HSCs (Figures 4H–4J and S4B–S4D). Thus, we show

Bptf to be essential for normal hematopoiesis.
DISCUSSION

BPTF Plays an Essential Role in the Maintenance and

Functionality of HSCs

How adult stem cells sustain themselves remains as an

intriguing question. Using knockout and reconstitution

systems, we showed an essential requirement of BPTF for

maintaining the HSPC populations and their repopulating

capacity. Mechanistically, our transcriptome profiling re-

vealed a previously unappreciated, BPTF-dependent gene-

activation program, which includes a set of master TFs

known to be vital for HSC self-renewal (Meis1, Pbx1, Mn1,

and Lmo2), the AP1 complex, and the MLL/KMT2A signa-

ture genes. BPTF also sustains an open chromatin state at

target ‘‘stemness’’ genes. Thus, BPTF acts as a safeguard of

adult hematopoiesis, ensuring HSCs’ reconstitution func-
(F and G) Total cell numbers in the femur (F) and the size of spleen
induction. *p < 0.05; **p < 0.01.
(H–J) Complete blood counts of peripheral blood collected from BptfcK

(H); RBC, red blood cells (I); and platelets (J) (see also Figure S4). *
tion. In support, BPTF loss caused BM failure phenotypes

that are reminiscent of what was observed for KMT2A-

null HSCs (Artinger et al., 2013; Jude et al., 2007). BPTF ap-

pears to be more crucial for blood formation under stressed

conditions (e.g., reconstitution in irradiated mice) than in

the steady state, a phenomenon also described in a condi-

tional KMT2A-null model (McMahon et al., 2007). How-

ever, depth study is required to dissect the potentially over-

lapping and distinctive roles for BPTF and KMT2 in HSC

self-renewal and blood formation.
BPTF Controls Vital Gene-Expression Programs to

Sustain Homeostasis of Multiple Cell Lineages

In related research, BPTF acts as a crucial regulator of mam-

mary gland and epidermal stem cells (Frey et al., 2017;

Mulder et al., 2012), melanocytes (Koludrovic et al.,

2015), and T cells (Landry et al., 2011; Wu et al., 2016).

Here, an intriguing question is how the general chromatin

regulator BPTF controls a defined yet distinct gene-expres-

sion program among different cell lineages. Presumably

these cells differ in patterns of histone modifications,

which can stabilize BPTF binding to genes essential for

lineage definition. Also, BPTF/NURF interacts with

DNA-binding factors such as CTCF (Qiu et al., 2015) and

c-MYC (Richart et al., 2016a). A multivalent interaction

of NURF to histonemodifications, TFs, and other recruiting

factors can act in concert to dictate distinct genomic target-

ing of BPTF/NURF.
The Essential Function of BPTF inNormal Tissue Raises

a Concern on Targeting It in Cancer Therapy

Recently, the oncogenic role of BPTF was reported in mel-

anoma (Dar et al., 2015, 2016), pancreatic tumors, and

Burkitt’s lymphoma (Richart et al., 2016b), where BPTF

was shown to promote the gene program related to tumor

cell growth or survival such as c-MYC and BCL2. Bptf

carries an H3K4me3-binding PHD and an acetyl-histone-

binding bromodomain. Both motifs including PHD asso-

ciate with human disease (Baker et al., 2008; Gough

et al., 2014; Wang et al., 2009) and can be potentially

druggable (Arrowsmith et al., 2012). BPTF was proposed

as a drug target for cancer therapy (Richart et al.,

2016a). However, increasing evidence now shows a vital

requirement of BPTF for normal homeostasis of a range

of tissues. Such broad homeostatic function for Bptf re-

quires additional studies to address toxicity associated

with targeting this protein in cancer.
(G) in Bptff/f (n = 3) versus BptfcKO (n = 4) mice 4 weeks after cre

O mice (n = 4) and Bptff/f littermates (n = 4): WBC, white blood cells
**p < 0.001.
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EXPERIMENTAL PROCEDURES

Details of additional procedures such as BMT, FACS, sorting,

ATAC-seq, and ChIP are provided in Supplemental Experimental

Procedures.
Knockout Mice
CD45.2+ B/6 mice carrying the Bptff/f allele (stock #009367) or

Mx1-cre were purchased from the Jackson Laboratory and crossed

to produce Bptff/f;Mx1-cre mice and control littermates. To induce

Bptf knockout in the BM, we injected 2- to 3-month-old mice

with pIpC (Sigma) three times every other day. UNC-Chapel Hill

Institutional Animal Care andUse Committee approved all animal

experiments.
RNA-Seq
RNA was extracted from sorted LSK cells with the picoRNA Kit

(Applied Biosystems) and the RNA-seq library was prepared with

Illumina kits according to the manufacturer’s protocol, followed

by deep sequencing.
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