1,898 research outputs found
Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5
Poly-ubiquitylation is a common post-translational modification that can impart various functions to a target protein. Several distinct mechanisms have been reported for the assembly of poly-ubiquitin chains, involving either stepwise transfer of ubiquitin monomers or attachment of a preformed poly-ubiquitin chain and requiring either a single pair of ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3), or alternatively combinations of different E2s and E3s. We have analysed the mechanism of poly-ubiquitylation of the replication clamp PCNA by two cooperating E2–E3 pairs, Rad6–Rad18 and Ubc13–Mms2–Rad5. We find that the two complexes act sequentially and independently in chain initiation and stepwise elongation, respectively. While loading of PCNA onto DNA is essential for recognition by Rad6–Rad18, chain extension by Ubc13–Mms2–Rad5 is only slightly enhanced by loading. Moreover, in contrast to initiation, chain extension is tolerant to variations in the attachment site of the proximal ubiquitin moiety. Our results provide information about a unique conjugation mechanism that appears to be specialised for a regulatable pattern of dual modification
Structural basis for substrate specificity and regulation of nucleotide sugar transporters in the lipid bilayer
Nucleotide sugars are the activated form of monosaccharides used by glycosyltransferases during glycosylation. In eukaryotes the SLC35 family of solute carriers are responsible for their selective uptake into the Endoplasmic Reticulum or Golgi apparatus. The structure of the yeast GDP-mannose transporter, Vrg4, revealed a requirement for short chain lipids and a marked difference in transport rate between the nucleotide sugar and nucleoside monophosphate, suggesting a complex network of regulatory elements control transport into these organelles. Here we report the crystal structure of the GMP bound complex of Vrg4, revealing the molecular basis for GMP recognition and transport. Molecular dynamics, combined with biochemical analysis, reveal a lipid mediated dimer interface and mechanism for coordinating structural rearrangements during transport. Together these results provide further insight into how SLC35 family transporters function within the secretory pathway and sheds light onto the role that membrane lipids play in regulating transport across the membrane
Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase η in Saccharomyces cerevisiae
Bypassing of DNA lesions by damage-tolerant DNA polymerases depends on the interaction of these enzymes with the monoubiquitylated form of the replicative clamp protein, PCNA. We have analyzed the contributions of ubiquitin and PCNA binding to damage bypass and damage-induced mutagenesis in Polymerase η (encoded by RAD30) from the budding yeast Saccharomyces cerevisiae. We report here that a ubiquitin-binding domain provides enhanced affinity for the ubiquitylated form of PCNA and is essential for in vivo function of the polymerase, but only in conjunction with a basal affinity for the unmodified clamp, mediated by a conserved PCNA interaction motif. We show that enhancement of the interaction and function in damage tolerance does not depend on the ubiquitin attachment site within PCNA. Like its mammalian homolog, budding yeast Polymerase η itself is ubiquitylated in a manner dependent on its ubiquitin-binding domain
Structural basis for antibiotic transport and inhibition in PepT2
The uptake and elimination of beta-lactam antibiotics in the human body are facilitated by the proton-coupled peptide transporters PepT1 (SLC15A1) and PepT2 (SLC15A2). The mechanism by which SLC15 family transporters recognize and discriminate between different drug classes and dietary peptides remains unclear, hampering efforts to improve antibiotic pharmacokinetics through targeted drug design and delivery. Here, we present cryo-EM structures of the proton-coupled peptide transporter, PepT2 from Rattus norvegicus, in complex with the widely used beta-lactam antibiotics cefadroxil, amoxicillin and cloxacillin. Our structures, combined with pharmacophore mapping, molecular dynamics simulations and biochemical assays, establish the mechanism of beta-lactam antibiotic recognition and the important role of protonation in drug binding and transport
MemProtMD: Automated Insertion of Membrane Protein Structures into Explicit Lipid Membranes
SummaryThere has been exponential growth in the number of membrane protein structures determined. Nevertheless, these structures are usually resolved in the absence of their lipid environment. Coarse-grained molecular dynamics (CGMD) simulations enable insertion of membrane proteins into explicit models of lipid bilayers. We have automated the CGMD methodology, enabling membrane protein structures to be identified upon their release into the PDB and embedded into a membrane. The simulations are analyzed for protein-lipid interactions, identifying lipid binding sites, and revealing local bilayer deformations plus molecular access pathways within the membrane. The coarse-grained models of membrane protein/bilayer complexes are transformed to atomistic resolution for further analysis and simulation. Using this automated simulation pipeline, we have analyzed a number of recently determined membrane protein structures to predict their locations within a membrane, their lipid/protein interactions, and the functional implications of an enhanced understanding of the local membrane environment of each protein
On the temperature dependence of enzyme-catalyzed rates
One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalysed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalysed reactions occur with significant values of ∆Cp(‡) that are in general negative. That is, the heat capacity (∆Cp) for the enzyme-substrate complex is generally larger than ∆Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis (Pauling), a negative value for ∆Cp(‡) is the result of the enzyme binding weakly to the substrate and very tightly to the transition state. This observation of negative ∆Cp(‡) has important implications for the temperature dependence of enzyme-catalysed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalise the behaviour of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes and enzymes drive much of metabolism. Therefore we also expect to see characteristics of MMRT at the level of cells, whole organisms and even ecosystems.</p
Biological Variation of Plasma and Urinary Markers of Acute Kidney Injury in Patients with Chronic Kidney Disease
BACKGROUND: Identification of acute kidney injury (AKI) is predominantly based on changes in plasma creatinine concentration, an insensitive marker. Alternative biomarkers have been proposed. The reference change value (RCV), the point at which biomarker change can be inferred to have occurred with statistical certainty, provides an objective assessment of change in serial tests results in an individual. METHODS: In 80 patients with chronic kidney disease, weekly measurements of blood and urinary biomarker concentrations were undertaken over 6 weeks. Variability was determined and compared before and after adjustment for urinary creatinine and across subgroups stratified by level of kidney function, proteinuria, and presence or absence of diabetes. RESULTS: RCVs were determined for whole blood, plasma, and urinary neutrophil gelatinase-associated lipocalin (111%, 59%, and 693%, respectively), plasma cystatin C (14%), creatinine (17%), and urinary kidney injury molecule 1 (497%), tissue inhibitor of metalloproteinases 2 (454%), N-acetyl-?-d-glucosaminidase (361%), interleukin-18 (819%), albumin (430%), and ?1-microglobulin (216%). Blood biomarkers exhibited lower variability than urinary biomarkers. Generally, adjusting urinary biomarker concentrations for creatinine reduced (P < 0.05) within-individual biological variability (CVI). For some markers, variation differed (P < 0.05) between subgroups. CONCLUSIONS: These data can form a basis for application of these tests in clinical practice and research studies and are applicable across different levels of kidney function and proteinuria and in the presence or absence of diabetes. Most of the studied biomarkers have relatively high CVI (noise) but also have reported large concentration changes in response to renal insult (signal); thus progressive change should be detectable (high signal-to-noise ratio) when baseline data are available
Recommended from our members
Outcomes in patients with gunshot wounds to the brain.
Introduction:Gunshot wounds to the brain (GSWB) confer high lethality and uncertain recovery. It is unclear which patients benefit from aggressive resuscitation, and furthermore whether patients with GSWB undergoing cardiopulmonary resuscitation (CPR) have potential for survival or organ donation. Therefore, we sought to determine the rates of survival and organ donation, as well as identify factors associated with both outcomes in patients with GSWB undergoing CPR. Methods:We performed a retrospective, multicenter study at 25 US trauma centers including dates between June 1, 2011 and December 31, 2017. Patients were included if they suffered isolated GSWB and required CPR at a referring hospital, in the field, or in the trauma resuscitation room. Patients were excluded for significant torso or extremity injuries, or if pregnant. Binomial regression models were used to determine predictors of survival/organ donation. Results:825 patients met study criteria; the majority were male (87.6%) with a mean age of 36.5 years. Most (67%) underwent CPR in the field and 2.1% (n=17) survived to discharge. Of the non-survivors, 17.5% (n=141) were considered eligible donors, with a donation rate of 58.9% (n=83) in this group. Regression models found several predictors of survival. Hormone replacement was predictive of both survival and organ donation. Conclusion:We found that GSWB requiring CPR during trauma resuscitation was associated with a 2.1% survival rate and overall organ donation rate of 10.3%. Several factors appear to be favorably associated with survival, although predictions are uncertain due to the low number of survivors in this patient population. Hormone replacement was predictive of both survival and organ donation. These results are a starting point for determining appropriate treatment algorithms for this devastating clinical condition. Level of evidence:Level II
On the temperature dependence of enzyme-catalyzed rates
One of the critical variables that
determine the rate of any reaction
is temperature. For biological systems, the effects of temperature
are convoluted with myriad (and often opposing) contributions from
enzyme catalysis, protein stability, and temperature-dependent regulation,
for example. We have coined the phrase “macromolecular rate
theory (MMRT)” to describe the temperature dependence of enzyme-catalyzed
rates independent of stability or regulatory processes. Central to
MMRT is the observation that enzyme-catalyzed reactions occur with
significant values of Δ<i>C</i><sub><i>p</i></sub><sup>‡</sup> that are in general negative. That is,
the heat capacity (<i>C</i><sub><i>p</i></sub>) for the enzyme–substrate complex is generally larger than
the <i>C</i><sub><i>p</i></sub> for the enzyme-transition
state complex. Consistent with a classical description of enzyme catalysis,
a negative value for Δ<i>C</i><sub><i>p</i></sub><sup>‡</sup> is the result of the enzyme binding relatively
weakly to the substrate and very tightly to the transition state.
This observation of negative Δ<i>C</i><sub><i>p</i></sub><sup>‡</sup> has important implications for
the temperature dependence of enzyme-catalyzed rates. Here, we lay
out the fundamentals of MMRT. We present a number of hypotheses that
arise directly from MMRT including a theoretical justification for
the large size of enzymes and the basis for their optimum temperatures.
We rationalize the behavior of psychrophilic enzymes and describe
a “psychrophilic trap” which places limits on the evolution
of enzymes in low temperature environments. One of the defining characteristics
of biology is catalysis of chemical reactions by enzymes, and enzymes
drive much of metabolism. Therefore, we also expect to see characteristics
of MMRT at the level of cells, whole organisms, and even ecosystems
Estimation of changes in the force of infection for intestinal and urogenital schistosomiasis in countries with Schistosomiasis Control Initiative-assisted programmes
The last decade has seen an expansion of national schistosomiasis control programmes in Africa based on large-scale preventative chemotherapy. In many areas this has resulted in considerable reductions in infection and morbidity levels in treated individuals. In this paper, we quantify changes in the force of infection (FOI), defined here as the per (human) host parasite establishment rate, to ascertain the impact on transmission of some of these programmes under the umbrella of the Schistosomiasis Control Initiative (SCI)
- …