95,114 research outputs found
Does Scientific Progress Consist in Increasing Knowledge or Understanding?
Bird argues that scientific progress consists in increasing knowledge. Dellsén objects that increasing knowledge is neither necessary nor sufficient for scientific progress, and argues that scientific progress rather consists in increasing understanding. Dellsén also contends that unlike Bird’s view, his view can account for the scientific practices of using idealizations and of choosing simple theories over complex ones. I argue that Dellsén’s criticisms against Bird’s view fail, and that increasing understanding cannot account for scientific progress, if acceptance, as opposed to belief, is required for scientific understanding
Formulation of the information capacity of the optical-mechanical line-scan imaging process
An expression for the information capacity of the optical-mechanical line-scan imaging process is derived which includes the effects of blurring of spatial, photosensor noise, aliasing, and quantization. Both the information capacity for a fixed data density and the information efficiency (the ratio of information capacity to data density) exhibit a distinct single maximum when displayed as a function of sampling rate, and the location of this maximum was determined by the system frequency-response shape, signal-to-noise ratio, and quantization interval
A spectral reflectance estimation technique using multispectral data from the Viking lander camera
A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system
Remark on the effective potential of the gravitational perturbation in the black hole background projected on the brane
The polar perturbation is examined when the spacetime is expressed by a 4d
metric induced from higher-dimensional Schwarzschild geometry. Since the
spacetime background is not a vacuum solution of 4d Einstein equation, the
various general principles are used to understand the behavior of the
energy-momentum tensor under the perturbation. It is found that although the
general principles fix many components, they cannot fix two components of the
energy-momentum tensor. Choosing two components suitably, we derive the
effective potential which has a correct 4d limit.Comment: 12 pages, no figure, CQG accepte
A Neural Network model with Bidirectional Whitening
We present here a new model and algorithm which performs an efficient Natural
gradient descent for Multilayer Perceptrons. Natural gradient descent was
originally proposed from a point of view of information geometry, and it
performs the steepest descent updates on manifolds in a Riemannian space. In
particular, we extend an approach taken by the "Whitened neural networks"
model. We make the whitening process not only in feed-forward direction as in
the original model, but also in the back-propagation phase. Its efficacy is
shown by an application of this "Bidirectional whitened neural networks" model
to a handwritten character recognition data (MNIST data).Comment: 16page
Recommended from our members
Quantile autoregressive distributed lag model with an application to house price returns
This paper studies quantile regression in an autoregressive dynamic framework with exogenous stationary covariates. Hence, we develop a quantile autoregressive distributed lag model (QADL). We show that these estimators are consistent and asymptotically normal. Inference based on Wald and Kolmogorov-Smirnov tests for general linear restrictions is proposed. An extensive Monte Carlo simulation is conducted to evaluate the properties of the estimators. We demonstrate the potential of the QADL model with an application to house price returns in the United Kingdom. The results show that house price returns present a heterogeneous autoregressive behavior across the quantiles. The real GDP growth and interest rates also have an asymmetric impact on house prices variations
Application of information theory to the design of line-scan imaging systems
Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems
Scaling in the crossover from random to correlated growth
In systems where deposition rates are high compared to diffusion, desorption
and other mechanisms that generate correlations, a crossover from random to
correlated growth of surface roughness is expected at a characteristic time
t_0. This crossover is analyzed in lattice models via scaling arguments, with
support from simulation results presented here and in other authors works. We
argue that the amplitudes of the saturation roughness and of the saturation
time scale as {t_0}^{1/2} and t_0, respectively. For models with lateral
aggregation, which typically are in the Kardar-Parisi-Zhang (KPZ) class, we
show that t_0 ~ 1/p, where p is the probability of the correlated aggregation
mechanism to take place. However, t_0 ~ 1/p^2 is obtained in solid-on-solid
models with single particle deposition attempts. This group includes models in
various universality classes, with numerical examples being provided in the
Edwards-Wilkinson (EW), KPZ and Villain-Lai-Das Sarma (nonlinear molecular-beam
epitaxy) classes. Most applications are for two-component models in which
random deposition, with probability 1-p, competes with a correlated aggregation
process with probability p. However, our approach can be extended to other
systems with the same crossover, such as the generalized restricted
solid-on-solid model with maximum height difference S, for large S. Moreover,
the scaling approach applies to all dimensions. In the particular case of
one-dimensional KPZ processes with this crossover, we show that t_0 ~ nu^{-1}
and nu ~ lambda^{2/3}, where nu and lambda are the coefficients of the linear
and nonlinear terms of the associated KPZ equations. The applicability of
previous results on models in the EW and KPZ classes is discussed.Comment: 14 pages + 5 figures, minor changes, version accepted in Phys. Rev.
Aliased noise in radiometric measurements
The magnitude of aliased noise that degrades the accuracy of continuous reconstructions of discrete radiometric measurements was evaluated as a function of the spatial response and sampling intervals of the radiometer, and of the resolution of the reconstructed measurements. A Wiener spectrum, representative of a wide range of scenes, was used to characterize the radiance fluctuations
- …