8,934 research outputs found

    Deimmunizing substitutions in Pseudomonas exotoxin domain III perturb antigen processing without eliminating T-cell epitopes

    Full text link
    © 2019 Moss et al. Effective adaptive immune responses depend on activation of CD4 T cells via the presentation of antigen peptides in the context of major histocompatibility complex (MHC) class II. The structure of an antigen strongly influences its processing within the endolysosome and potentially controls the identity of peptides that are presented to T cells. A recombinant immunotoxin, comprising exotoxin A domain III (PE-III) from Pseudomonas aeruginosa and a cancer-specific antibody fragment, has been developed to manage cancer, but its effectiveness is limited by the induction of neutralizing antibodies. Here, we observed that this immunogenicity is substantially reduced by substituting six residues within PE-III. Although these substitutions targeted T-cell epitopes, we demonstrate that reduced conformational stability and protease resistance were responsible for the reduced antibody titer. Analysis of mouse T-cell responses coupled with biophysical studies on single-substitution versions of PE-III suggested that modest but comprehensible changes in T-cell priming can dramatically perturb antibody production. The most strongly responsive PE-III epitope was well-predicted by a structure-based algorithm. In summary, single-residue substitutions can drastically alter the processing and immunogenicity of PE-III but have only modest effects on CD4 T-cell priming in mice. Our findings highlight the importance of structure-based processing constraints for accurate epitope prediction

    Preparation and characterisation of titanium dioxide produced from Ti-salt flocculated sludge in water treatment

    Full text link
    During the past few years, titanium salts were investigated as alternative coagulants for the removal of organic matter of different molecular sizes in contaminated water. The flocculation efficiency of Ti-salt was comparable to those of FeCl3 and Al2(SO4)3 salts, commonly used coagulants. Incinerated sludge-TiO2 showed higher surface area and photocatalytic activity than commercially available TiO2. Metal-doped forms were produced by adding coagulant aids such as iron (Fe-), aluminium (Al-) and (Ca-) calcium salts during Ti-salt flocculation to increase pH. Ca- and Al- doped TiO2 showed very high photocatalytic activity compared to Fe-doped TiO2. When tested in a pilot scale plant for treatment of dye wastewater to check practical feasibility of the novel process, the removal ratio of the chemical oxygen demand was comparable to those of commonly used coagulants but the settling of sludge was faster. The TiO2 generated after sludge incineration showed a high photocatalytic activity for degradation of volatile organic compounds and increased the rate of hydrogen production by water photosplitting. TiCl4 coagulant and TiO2 produced from different water sources with different concentrations had low acute toxicity compared to heavy metals and commercial TiO2 when examined based on D. Magna mortality. This paper presents the production, characterisation and the photoactivity of TiO2 produced from Ti-salt flocculated sludge. Different case studies are discussed to highlighted recent advances in this field

    Computational neuroanatomy: ontology-based representation of neural components and connectivity

    Get PDF
    Background: A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. Results: We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Conclusion: Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Exploring Web-Based University Policy Statements on Plagiarism by Research-Intensive Higher Education Institutions

    Get PDF
    Plagiarism may distress universities in the US, but there is little agreement as to exactly what constitutes plagiarism. While there is ample research on plagiarism, there is scant literature on the content of university policies regarding it. Using a systematic sample, we qualitatively analyzed 20 Carnegie-classified universities that are “Very High in Research.” This included 15 public state universities and five high-profile private universities. We uncovered highly varied and even contradictory policies at these institutions. Notable policy variations existed for verbatim plagiarism, intentional plagiarism and unauthorized student collaboration at the studied institutions. We conclude by advising that the American Association of University Professors (AAUP), the American Association of Colleges and Universities (AACU) and others confer and come to accord on the disposition of these issues

    Effective action of three-dimensional extended supersymmetric matter on gauge superfield background

    Full text link
    We study the low-energy effective actions for gauge superfields induced by quantum N=2 and N=4 supersymmetric matter fields in three-dimensional Minkowski space. Analyzing the superconformal invariants in the N=2 superspace we propose a general form of the N=2 gauge invariant and superconformal effective action. The leading terms in this action are fixed by the symmetry up to the coefficients while the higher order terms with respect to the Maxwell field strength are found up to one arbitrary function of quasi-primary N=2 superfields constructed from the superfield strength and its covariant spinor derivatives. Then we find this function and the coefficients by direct quantum computations in the N=2 superspace. The effective action of N=4 gauge multiplet is obtained by generalizing the N=2 effective action.Comment: 1+27 pages; v2: minor corrections, references adde

    An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ

    Get PDF
    Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material

    The impact of hyperhidrosis on patients' daily life and quality of life : A qualitative investigation

    Get PDF
    Background: An understanding of the daily life impacts of hyperhidrosis and how patients deal with them, based on qualitative research, is lacking. This study investigated the impact of hyperhidrosis on the daily life of patients using a mix of qualitative research methods. Methods: Participants were recruited through hyperhidrosis patient support groups such as the Hyperhidrosis Support Group UK. Data were collected using focus groups, interviews and online surveys. A grounded theory approach was used in the analysis of data transcripts. Data were collected from 71 participants, out of an initial 100 individuals recruited. Results: Seventeen major themes capturing the impacts of hyperhidrosis were identified; these covered all areas of life including daily life, psychological well-being, social life, professional /school life, dealing with hyperhidrosis, unmet health care needs and physical impact. Conclusions: Psychosocial impacts are central to the overall impacts of hyperhidrosis, cutting across and underlying the limitations experienced in other areas of life.Peer reviewe

    Orbital Kondo effect in carbon nanotubes

    Full text link
    Progress in the fabrication of nanometer-scale electronic devices is opening new opportunities to uncover the deepest aspects of the Kondo effect, one of the paradigmatic phenomena in the physics of strongly correlated electrons. Artificial single-impurity Kondo systems have been realized in various nanostructures, including semiconductor quantum dots, carbon nanotubes and individual molecules. The Kondo effect is usually regarded as a spin-related phenomenon, namely the coherent exchange of the spin between a localized state and a Fermi sea of electrons. In principle, however, the role of the spin could be replaced by other degrees of freedom, such as an orbital quantum number. Here we demonstrate that the unique electronic structure of carbon nanotubes enables the observation of a purely orbital Kondo effect. We use a magnetic field to tune spin-polarized states into orbital degeneracy and conclude that the orbital quantum number is conserved during tunneling. When orbital and spin degeneracies are simultaneously present, we observe a strongly enhanced Kondo effect, with a multiple splitting of the Kondo resonance at finite field and predicted to obey a so-called SU(4) symmetry.Comment: 26 pages, including 4+2 figure
    corecore