13,671 research outputs found

    Release of infectious hepatitis C virus from huh7 cells occurs via a trans-golgi network-to-endosome pathway independent of very-low-density lipoprotein secretion

    Get PDF
    © 2016 Mankouri et al. The release of infectious hepatitis C virus (HCV) particles from infected cells remains poorly characterized. We previously demonstrated that virus release is dependent on the endosomal sorting complex required for transport (ESCRT). Here, we show a critical role of trans-Golgi network (TGN)-endosome trafficking during the assembly, but principally the secretion, of infectious virus. This was demonstrated by both small interfering RNA (siRNA)-mediated silencing of TGN-associated adaptor proteins and a panel of dominant negative (DN) Rab GTPases involved in TGN-endosome trafficking steps. Importantly, interfering with factors critical for HCV release did not have a concomitant effect on secretion of triglycerides, ApoB, or ApoE, indicating that particles are likely released from Huh7 cells via pathways distinct from that of very-low-density lipoprotein (VLDL). Finally, we show that HCV NS2 perturbs TGN architecture, redistributing TGN membranes to closely associate with HCV core protein residing on lipid droplets. These findings support the notion that HCV hijacks TGN-endosome trafficking to facilitate particle assembly and release. Moreover, although essential for assembly and infectivity, the trafficking of mature virions is seemingly independent of host lipoproteins

    A Laser-Based Vision System for Weld Quality Inspection

    Get PDF
    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved

    Three dimensional tracking for volumetric spectral-domain optical coherence tomography

    Get PDF
    We present a three-dimensional (3D) tracker for a clinical ophthalmic spectral domain optical coherence tomography (SD-OCT) system that combines depth-tracking with lateral tracking, providing a stabilized reference frame for 3D data recording and post acquisition analysis. The depth-tracking system is implemented through a real-time dynamic feedback mechanism to compensate for motion artifact in the axial direction. Active monitoring of the retina and adapting the reference arm of the interferometer allowed the whole thickness of the retina to be stabilized to within +/- 100 mu m. We achieve a relatively constant SNR from image to image by stabilizing the image of the retina with respect to the depth dependent sensitivity of SD-OCT. The depth tracking range of our system is 5.2 mm in air and the depth is adjusted every frame. Enhancement in the stability of the images with the depth-tracking algorithm is demonstrated on a healthy volunteer.X1119sciescopu

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    Multifractal analysis of the fracture surfaces of foamed polypropylene/polyethylene blends

    Full text link
    The two-dimensional multifractal detrended fluctuation analysis is applied to reveal the multifractal properties of the fracture surfaces of foamed polypropylene/polyethylene blends at different temperatures. Nice power-law scaling relationship between the detrended fluctuation function FqF_{q} and the scale ss is observed for different orders qq and the scaling exponent h(q)h(q) is found to be a nonlinear function of qq, confirming the presence of multifractality in the fracture surfaces. The multifractal spectra f(α)f(\alpha) are obtained numerically through Legendre transform. The shape of the multifractal spectrum of singularities can be well captured by the width of spectrum Δα\Delta\alpha and the difference of dimension Δf\Delta f. With the increase of the PE content, the fracture surface becomes more irregular and complex, as is manifested by the facts that Δα\Delta\alpha increases and Δf\Delta f decreases from positive to negative. A qualitative interpretation is provided based on the foaming process.Comment: 8 page
    corecore