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Thin-film solar cells consisting of earth-abundant and non-toxic materials were made from 

pulsed chemical vapor deposition (pulsed-CVD) of SnS as the p-type absorber layer and atomic 

layer deposition (ALD) of Zn(O,S) as the n-type buffer layer.  The effects of deposition 

temperature and annealing conditions of the SnS absorber layer were studied for solar cells with 

a structure of Mo/SnS/Zn(O,S)/ZnO/ITO.  Solar cells were further optimized by varying the 

stoichiometry of Zn(O,S) and the annealing conditions of SnS.  Post-deposition annealing in pure 

hydrogen sulfide improved crystallinity and increased the carrier mobility by one order of 

magnitude, and a power conversion efficiency up to 2.9% was achieved.   
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Introduction 

Tin monosulfide (SnS) has shown to be a promising alternative p-type absorber material 

to conventional Cu(In,Ga)(S,Se)2 (CIGS) and CdTe due to its earth-abundancy and non-toxicity, 

suitable bandgap of 1.1 – 1.5 eV [1,2], and high absorption coefficient above 104 cm-1 [3,4].  

Furthermore, SnS is a binary compound that involves simpler growth chemistry compared to 

Cu2ZnSn(Se,S)4 [5,6], another investigated earth-abundant absorber material.  Zinc oxysulfide, 

Zn(O,S), has shown to be a promising non-toxic n-type buffer layer to replace the conventional 

toxic CdS [7,8] in CIGS-based solar cells [8].  Zn(O,S) allows simple tuning of the conduction 

band offset (CBO) at the p-n junction interface by optimizing the oxygen and sulfur contents of 

Zn(O,S) [9-11], which can be easily done with atomic layer deposition (ALD) by altering the 

number of pulses for each precursor [7,12,13].  Such tunability of the buffer layer is important, 

since a “cliff” structure in the conduction-band energy alignment (Ec,absorber > Ec,buffer) increases 

interface recombination, whereas a “spike” structure (Ec,absorber < Ec,buffer) forms a barrier that 

blocks photocurrent collection for CBO larger than 0.5 eV [8,14-19].  Recently, heterojunction 

solar cells using a p-type SnS absorber layer and an n-type ZnO-based buffer layer have shown 

to be a promising path towards earth-abundant non-toxic thin-film solar cells exhibiting a 

certified total-area record efficiency of 2.04% (uncertified active-area efficiency of 2.46%) with 

Zn(O,S) buffer layers [9], and an efficiency of 2.1% with Zn1-xMgxO buffer layers [20].  

Although SnS exhibits properties suitable for an absorber layer, grain boundaries and defects 

such as sulfur vacancies in the bulk can induce recombination centers, which diminish the 

performance of the solar cells [21].  Such defects can be reduced or eliminated by providing 

sulfur to the film through an appropriate post-annealing atmosphere. 
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In this paper, we grow SnS by pulsed-chemical vapor deposition (pulsed-CVD) from a 

cyclic tin(II) amide precursor [22] and improve its quality by varying the temperatures of growth 

and post-deposition annealing.  The device performance was further improved by optimizing the 

oxygen and sulfur contents of the Zn(O,S) buffer layer.  Since different growth and annealing 

conditions of SnS can change the conduction-band energy level of the absorber layer, tuning of 

the CBO through the Zn(O,S) buffer layer composition is critical to optimizing the band 

alignment across the junction [23].  For the optimum conditions, the solar cell efficiency reaches 

2.9%, the highest yet reported for solar cells with SnS as the absorber layer. 

 

Experimental Procedure 

Solar cell devices with a structure of Si/SiO2/Mo/SnS/Zn(O,S)/ZnO/ITO/Ag were 

fabricated.  A schematic diagram of the device stack is shown in Figure 1(a).  A bilayer of Mo (1 

μm, 0.3 ohm/sq) was sputtered onto silicon (100) substrates with about 300 nm of silicon dioxide 

on top.  The first layer of Mo was sputtered for 30 min at a working pressure of 10 mTorr, and 

the second layer for 30 min at 2 mTorr [24].   

A pulsed-CVD process was used to grow ~500 nm of SnS using N2,N3-di-tert-butyl-

butane-2,3-diamido-tin(II) (C12H26N2Sn, Sigma Aldrich) and 4% H2S in N2 for the Sn and S 

precursors, respectively.  The structure of the Sn precursor is shown in Figure 1(b).  SnS films 

were grown at either 70°C or 120°C, and the Sn precursor source was kept at 40°C.  Each 

pulsed-CVD cycle consisted of a dose of the Sn precursor with N2 assistance for 1 s, then a dose 

of H2S to mix and react with the Sn precursor in the deposition zone for 1 s in closed valve mode, 

and then evacuation for 2 s.  The pressures for the Sn precursor, N2 assist, and H2S were 3.7, 

152.4 and 154.5 Torr, respectively. The volumes of the vapor space used for dosing each 
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precursor were approximately 13.6, 29.9, and 10.7 mL for the Sn precursor, N2 assist, and H2S, 

respectively and were all kept at 40°C.  Based on these values, the exposure of each dose of Sn 

precursor, N2 assist, and H2S were approximately 0.20, 18, and 6.50 Torr·s, respectively.  SnS 

films were annealed in pure H2S (constant flow) with a vapor pressure of ~6.5 Torr for 1.5 h at 

temperatures of 200°C, 300°C, and 400°C.  Based on the phase diagram of SnS and previous 

studies [25,26], SnS is known to evaporate congruently, and stoichiometry of the films should 

remain the same for the annealing temperatures investigated in this study.   

Zn(O,S) (30 nm) and ZnO (10 nm) were grown at 120°C by ALD.  Diethylzinc (DEZ, 

Zn(C2H5)2, Strem Chemicals), deionized H2O, and a gas mixture of 4% H2S in N2 were used as 

the zinc, oxygen, and sulfur sources at room temperature, respectively.  The pressures for the Zn 

precursor, H2O, and H2S were 7.5, 7.8, and 154.5 Torr, respectively. The exposures used for each 

dose of DEZ, H2O, and H2S are estimated to be approximately 0.13, 0.15, and 6.50 Torr·s with 

trapped volumes of 4.4, 4.8, and 10.7 mL, respectively, which were all kept at 40°C.  Each 

precursor was exposed to the substrate for 1 s using closed valve mode.  The purge times for 

each precursor were 30, 30, and 10 s for DEZ, H2O, and H2S, respectively.  The ALD sequence 

for Zn(O,S) was (DEZ/N2/H2O/N2) × m + (DEZ/N2/H2S/N2) × n, where m and n indicate the 

number of pulses for ZnO and ZnS, respectively.  Stoichiometry of the Zn(O,S) films was 

measured by Rutherford backscattering spectroscopy (RBS).  By RF magnetron sputtering, 200 

nm of indium tin oxide (ITO) was deposited at room temperature through a shadow mask to 

define the device area (0.25 cm2).  For the top electrode, 500 nm of Ag was electron-beam 

evaporated through a shadow mask at room temperature.   

Current density vs. voltage (J-V) characteristics were measured with a Keithley 4200 

sourcemeter.  The standard 100 mW/cm2 (1 Sun) illumination was generated by a Newport Oriel 

91194 solar simulator with a 1300 W Xe-lamp using an AM1.5G filter, and a Newport Oriel 
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68951 flux controller calibrated by an NREL-certified Si reference cell equipped with a BK-7 

window.  External quantum efficiency (EQE) measurements were performed with a PV 

Measurements Model QEX7 tool at room temperature.   

Van der Pauw measurements and Hall effect were used to determine the carrier 

concentration and carrier type of individual layers. The carrier mobility was then determined 

from ρ = 1/peμ, where ρ is the resistivity, p is the carrier concentration, e is the electron charge, 

and μ is the carrier mobility.  Cross-sectional (with 12° tilt) and plan-view morphology of SnS 

films were examined by field-emission scanning electron microscopy (FESEM, Zeiss, Ultra-55).  

The crystal structure and texture of the films were analyzed by x-ray diffraction (XRD, 

PANalytical X-Pert Pro) with Cu Kα radiation using a θ-2θ scan.  SnS films were grown on 

quartz substrates for Hall measurements, on a layered substrate of Si/SiO2/Mo for XRD analysis, 

on glassy carbon substrates for RBS, and on Si(100) substrates for FESEM.   

 

Results and Discussion 

 The dependence of H2S annealing temperature on the electrical properties of SnS were 

investigated.  Figure 2 compares SnS films grown at 70°C (dotted) and 120°C (solid).  

Resistivity of the films tended to decrease with increasing annealing temperature, and hole 

carrier concentrations ranged from 1015 to 1016 cm-3 for both depositions temperatures.  The hole 

mobility increased with the H2S annealing temperatures due to the decrease in resistivity.  

Raising the deposition temperature from 70°C to 120°C improved the mobility of the as-

deposited SnS film from 1 to 4 cm2/V·s.  The mobility of the as-deposited film grown at 120°C 

is comparable to the film grown at 70°C and annealed at 300°C.  Annealing films grown at 

120°C, improved the mobility from 4 to 10 cm2/V·s.  The enhanced mobility could be due to the 

improvement of crystallinity (point and extended defects).  Grain growth from annealing is 
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observed in the cross-sectional and plan-view SEM images shown in Figure 3.  Much larger 

grain growth after H2S annealing was observed for the higher deposition temperature.  This is 

because the grains of the as-deposited film grown at 120°C start off larger than those grown at 

70°C.  Raising the deposition temperature to 120°C also eliminated pinholes that were observed 

to increase in number with annealing temperature for films deposited at 70°C. 

 For SnS films grown at 120°C, the effect of H2S annealing temperature on the solar-cell 

performance was investigated for a fixed Zn(O,S) buffer layer with S/Zn = 0.37, as determined 

by RBS.  Figure 4 shows J-V plots under dark and 1 Sun illumination.  Compared to the device 

with as-deposited SnS, the devices with SnS annealed in pure H2S resulted in larger short-circuit 

current densities (JSC) and open-circuit voltages (VOC) due to the improvement of the SnS 

absorber layer quality.  The improvement in VOC can be explained by the overall tendency shown 

in the dark saturation current, whereas the improvement in JSC can be explained by the improved 

carrier collection (Fig. 7a).  The device with SnS annealed at 300°C showed a cell performance 

of JSC = 17.9 mA/cm2, VOC = 256 mV, FF = 42.0%, and η = 1.9%, and the device with SnS 

annealed at 400°C showed a cell performance of JSC = 18.5  mA/cm2, VOC = 235 mV, FF = 

42.8%, and η = 1.9%, as summarized in Table 1.  The device with SnS annealed at 300°C 

showed improvement with less leakage current compared to the device with as-deposited SnS.  

However, the leakage current increased when annealing SnS at 400°C in pure H2S, resulting in 

lower VOC. 

 For devices with SnS annealed in H2S at 300°C and 400°C, different stoichiometries of 

Zn(O,S) were investigated to further improve the band alignment of the solar cell, as shown in 

the J-V characteristics under dark and 1 Sun illumination in Figure 5.  For both SnS annealing 

temperatures, higher sulfur content in Zn(O,S) led to lower current leakage.  For the devices with 

SnS annealed at 300°C, as the sulfur content in Zn(O,S) increased, the JSC decreased and the VOC 
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increased due to the increase in the conduction band energy level of Zn(O,S) [23].  For Zn(O,S) 

with S/Zn = 0.50, the device performance improved with  JSC = 14.1  mA/cm2, VOC = 305 mV, 

and FF = 53.1%, as summarized in Table 2.  The efficiency increased to η = 2.3%, due to the 

improvement in VOC and FF.  However, for Zn(O,S) with S/Zn > 0.50, the device performance 

significantly deteriorated because the conduction band energy level of Zn(O,S) was too high, 

impeding the photo-generated electron flow, and resulting in very low JSC and poor FF.  For the 

devices with SnS annealed at 400°C and Zn(O,S) with S/Zn = 0.14, the rectifying behavior was 

lost due to the high conductivity of the buffer layer.  For the devices with SnS annealed at 400°C 

and Zn(O,S) with S/Zn > 0.14, the JSC increased with decreasing sulfur content in the buffer 

layer.  The solar cell performance improved to JSC = 24.9 mA/cm2, VOC = 261 mV, FF = 44.4%, 

and η = 2.9% for Zn(O,S) with S/Zn = 0.26 and SnS annealed at 400°C.  For the devices with 

SnS annealed at 300°C and 400°C, the optimum Zn(O,S) S/Zn ratios were 0.50 and 0.26, 

respectively.  This variation in optimum Zn(O,S) sulfur content is probably due to the change in 

surface conduction-band position of SnS from the different annealing conditions, leading to 

different CBO at the SnS/Zn(O,S) interface. 

Figure 6 shows the XRD scans of as-deposited SnS grown at 70°C, and as-deposited and 

H2S annealed SnS films grown at 120°C. The as-deposited films mainly have the cubic structure 

(JCPDS No. 04-004-8426) that is reported to be stable at low temperatures [27].  After annealing, 

the films convert to the orthorhombic phase (JCPDS No. 00-039-0354) that is stable at higher 

temperatures [28].  The orthorhombic (111) peak of SnS decreases as the deposition temperature 

increases from 70°C to 120°C.  For films grown at 120°C, the orthorhombic (111) peak increases 

with H2S annealing, and the orthorhombic (021) peak increases with increasing annealing 

temperature.  Such change in crystal orientation from the different annealing temperatures is 
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probably why the surface conduction-band position of SnS changes [29-31], resulting in 

variation of the optimum Zn(O,S) sulfur content for the solar cell devices [9]. 

External quantum efficiency measurements can be found in Figure 7.  For devices with 

increasing annealing temperature of SnS, EQE near the high wavelength region (λ > 600 nm) 

increased significantly, whereas EQE near the low wavelength region (λ < 450 nm) remained 

approximately the same.  The EQE enhancement at high wavelengths indicates collection-length 

improvement with H2S annealing of SnS.  Crystallinity improvement could be a possible reason 

for the improvement in collection length as shown by the increased red light response. For 

devices with SnS annealed at 400°C, EQE remained similar in the low wavelength region (λ < 

450 nm) despite the different sulfur contents in Zn(O,S), which is probably because Zn(O,S) is 

only 30 nm thick, allowing the ITO layer to do most of the absorbing for the low-wavelength 

region.  The overall EQE increased with decreasing sulfur content in Zn(O,S), which agrees well 

with the J-V characteristics under illumination.  

 

Conclusions 

 Devices with efficiencies up to 2.9% were achieved through improvement of the SnS 

absorber layer quality via annealing and varying the stoichiometry of Zn(O,S).  We successfully 

demonstrated solar-cell device improvements through annealing the SnS absorber layer in pure 

H2S, which improves crystallinity and reduces the density of grain boundaries.  Different 

deposition and annealing temperatures can lead to variations of the surface conduction-band 

positions of SnS, which is why it is beneficial to use a buffer layer with variable compositions 

like Zn(O,S) so that the CBO at the p-n junction interface can be easily optimized.  
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Figure Captions 

 

Figure 1.  (Color) (a) Schematic diagram of the solar-cell device stack under short-circuit 

conditions and (b) structural formula for the Sn precursor.  SnS/Zn(O,S) band-alignment was 

drawn in accordance with the ultraviolet photoelectron spectroscopy (UPS) measurements from 

previous study by L. Sun et al. [23]. 

 

Figure 2.  (Color) Plot of resistivity (green), hole carrier concentration (blue), and hole mobility 

(red) vs. annealing temperature in H2S, for SnS films deposited at 70°C (dotted) and 120°C 

(solid).   Resistivity and carrier concentration are plotted on a semilog scale, whereas mobility is 

plotted on a linear scale. 

 

Figure 3.  (Color) (a) Cross-sectional (with 12° tilt) and (b) plan-view FESEM images of as-

deposited SnS grown at 70°C and 120°C, and SnS post-annealed at 400°C in H2S. 

 

Figure 4.  (Color) (a) Current density vs. voltage (J-V) plots under dark (dotted) and 1 Sun 

illumination (solid) and (b) semilog J-V plots under dark for devices with the SnS layer annealed 

at different temperatures having Zn(O,S), S/Zn = 0.37 as the buffer layer.  

 

Figure 5.  (Color) (a, c) J-V characteristics under dark (dotted) and 1 Sun illumination (solid) and 

(b, d) semilog J-V characteristics under dark for devices with varied stoichiometry of the Zn(O,S) 

buffer layer.  Comparison of the SnS layer annealed in H2S at 300°C (a, b) and 400°C (c, d).  

 

Figure 6.  (Color)  X-ray diffraction scans of the as-deposited SnS grown at 70°C and 120°C, and 

SnS films grown at 120°C annealed in pure H2S at various temperatures.  Vertical lines represent 

orthorhombic SnS (o-SnS), cubic SnS (c-SnS), and Mo diffraction peak positions listed by 

JCPDS No. 00-039-0354, 04-004-8426, and 00-004-0809, respectively. 

 

Figure 7.  (Color) External quantum efficiency (EQE) of the various solar cell devices.  
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Table 2.  Comparison of solar cell parameters of devices with SnS deposited at 120°C and 

annealed at 300°C and 400°C using different Zn(O,S) layers. 
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Figure 1.  (Color) (a) Schematic diagram of the solar-cell device stack under short-circuit 

conditions and (b) structural formula for the Sn precursor.  SnS/Zn(O,S) band-alignment was 

drawn in accordance with the ultraviolet photoelectron spectroscopy (UPS) measurements from 

previous study by L. Sun et al. [23]. 
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Figure 2.  (Color) Plot of resistivity (green), hole carrier concentration (blue), and hole mobility 

(red) vs. annealing temperature in H2S, for SnS films deposited at 70°C (dotted) and 120°C 

(solid).   Resistivity and carrier concentration are plotted on a semilog scale, whereas mobility is 

plotted on a linear scale. 
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Figure 3.  (Color) (a) Cross-sectional (with 12° tilt) and (b) plan-view FESEM images of as-

deposited SnS grown at 70°C and 120°C, and SnS post-annealed at 400°C in H2S.  
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Figure 4.  (Color) (a) Current density vs. voltage (J-V) plots under dark (dotted) and 1 Sun 

illumination (solid) and (b) semilog J-V plots under dark for devices with the SnS layer annealed 

at different temperatures having Zn(O,S), S/Zn = 0.37 as the buffer layer.  
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Figure 5.  (Color) (a, c) J-V characteristics under dark (dotted) and 1 Sun illumination (solid) and 

(b, d) semilog J-V characteristics under dark for devices with varied stoichiometry of the Zn(O,S) 

buffer layer.  Comparison of the SnS layer annealed in H2S at 300°C (a, b) and 400°C (c, d).  
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Figure 6.  (Color)  X-ray diffraction scans of the as-deposited SnS grown at 70°C and 120°C, and 

SnS films grown at 120°C annealed in pure H2S at various temperatures.  Vertical lines represent 

orthorhombic SnS (o-SnS), cubic SnS (c-SnS), and Mo diffraction peak positions listed by 

JCPDS No. 00-039-0354, 04-004-8426, and 00-004-0809, respectively. 
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Figure 7.  (Color) External quantum efficiency (EQE) of the various solar cell devices.  
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Table 1.  Solar cell parameters of devices with Zn(O,S), S/Zn = 0.37 as the buffer layer.  

 

SnS Annealing JSC (mA/cm2) VOC (mV) FF (%) η (%) 

As-deposited, Tdep = 120°C 7.8 200 36.2 0.6 

H2S 200°C 14.4 222 45.7 1.5 

H2S 300°C 17.9 256 42.0 1.9 

H2S 400°C 18.5 235 42.8 1.9 
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Table 2.  Comparison of solar cell parameters of devices with SnS deposited at 120°C and 

annealed at 300°C and 400°C using different Zn(O,S) layers. 

 

SnS Annealing S/Zn in Zn(O,S) JSC (mA/cm2) VOC (mV) FF (%) η (%) 

H2S 300°C 0.14 20.4 181 40.1 1.5 

 
0.26 17.6 212 43.7 1.6 

 
0.37 17.9 256 42.0 1.9 

 
0.50 14.1 305 53.1 2.3 

 
0.64 4.6 289 25.1 0.3 

H2S 400°C 0.14 19.4 79 26.4 0.4 

 
0.26 24.9 261 44.4 2.9 

 
0.37 20.1 260 43.9 2.3 

 
0.50 14.0 254 29.3 1.1 

 


