600 research outputs found
Comparison of lower limb muscle activation according to horizontal whole-body vibration frequency and knee angle
Whole-body vibration refers to an exercise that stimulates the muscles, using a vibration with an amplitude and power, however, there are few studies that have dealt with fundamental questions such as optimal frequency or body position. This study aims to compare lower limb activation, according to horizontal whole-body vibration frequency and knee flexion angle, in healthy adults. Using 18 healthy adults aged 21–30, this study measured and analysed the activities of the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GCM) muscles, for different horizontal whole-body vibration frequencies (0 Hz, 2 Hz, and 4 Hz) and knee flexion angles (0°, 30°, and 60°), using surface electromyography (sEMG). There was a statistically significant increase in lower limb muscle activation according to horizontal whole-body vibration frequency and knee flexion angle: comparing muscle activation with frequency, the muscle activation of VL, BF, TA, and GCM increased with increase in frequency (p<0.05). The muscle activation of VL and TA increased with increase in knee flexion angle (p<0.05). In this study, it was observed that for whole-body vibration provided in a horizontal direction, larger the frequency and higher the knee flexion angle, greater the lower limb activation
Effect of Multiple Quantum Well Periods on Structural Properties and Performance of Extended Short-Wavelength Infrared LEDs
We present research on the role of multiple quantum well periods in extended short-wavelength infrared InGaAs/InAsPSb type-I LEDs. The fabricated LEDs consisted of 6, 15, and 30 quantum well periods, and we evaluated the structural properties and device performance through a combination of theoretical simulations and experimental characterization. The strain and energy band offset was precisely controlled by carefully adjusting the composition of the InAsPSb quaternary material, achieving high valence and conduction band offsets of 350 meV and 94 meV, respectively. Our LEDs demonstrated a high degree of relaxation of 94-96 %. Additionally, we discovered that the temperature-dependent dark current characterization attributed to generation-recombination and trap-assign tunneling, with trap-assign tunneling being more dominant at lower current injections. Electroluminescence analysis revealed that the predominant emission mechanism of the LEDs originated from localized exciton and free exciton radiative recombination, which the 30 quantum wells LED exhibited the highest contribution of the localized exciton/free exciton radiative recombination. We observed that increasing the quantum well periods from 6 to 15 led to an increase in the 300 K electroluminescence intensity of the LED. However, extending the quantum well period to 30 resulted in a decline in emission intensity due to the degradation of the epitaxial film quality
Clinical and Radiographic Features of Adult-onset Ankylosing Spondylitis in Korean Patients: Comparisons between Males and Females
The objective of this study was to investigate clinical and radiographic features and gender differences in Korean patients with adult-onset ankylosing spondylitis. Multicenter cross-sectional studies were conducted in the rheumatology clinics of 13 Korean tertiary referral hospitals. All patients had a confirmed diagnosis of ankylosing spondylitis according to the modified New York criteria. Clinical, laboratory, and radiographic features were evaluated and disease activities were assessed using the Bath ankylosing spondylitis disease activity index. Five hundred and five patients were recruited. The male to female ratio was 6.1:1. Average age at symptom onset was 25.4±8.9 yr and average disease duration was 9.6±6.8 yr. Males manifested symptoms at a significantly earlier age. HLA-B27 was more frequently positive in males. Hips were more commonly affected in males, and knees in females. When spinal mobility was measured using tragus-to-wall distance and the modified Schober's test, females had significantly better results. Radiographic spinal changes, including bamboo spine and syndesmophytes, were more common in males after adjustment of confounding factors. In conclusion, we observed significant gender differences in radiographic spinal involvement as well as other clinical manifestations among Korea patients with adult-onset ankylosing spondylitis. These findings may influence the timing of the diagnosis and the choice of treatment
Dynamics of Multiple Trafficking Behaviors of Individual Synaptic Vesicles Revealed by Quantum-Dot Based Presynaptic Probe
Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity
Prediction of major depressive disorder following beta-blocker therapy in patients with cardiovascular diseases
Incident depression has been reported to be associated with poor prognosis in patients with cardiovascular disease (CVD), which might be associated with beta-blocker therapy. Because early detection and intervention can alleviate the severity of depression, we aimed to develop a machine learning (ML) model predicting the onset of major depressive disorder (MDD). A model based on L1 regularized logistic regression was trained against the South Korean nationwide administrative claims database to identify risk factors for the incident MDD after beta-blocker therapy in patients with CVD. We identified 50,397 patients initiating beta-blockers for CVD, with 774 patients developing MDD within 365 days after initiating beta-blocker therapy. An area under the receiver operating characteristic curve (AUC) of 0.74 was achieved. A history of non-selective beta-blockers and factors related to anxiety disorder, sleeping problems, and other chronic diseases were the most strong predictors. AUCs of 0.62–0.71 were achieved in the external validation conducted on six independent electronic health records and claims databases in the USA and South Korea. In conclusion, an ML model that identifies patients at high-risk for incident MDD was developed. Application of ML to identify susceptible patients for adverse events of treatment may serve as an important approach for personalized medicine
Solution-Processed All-Solid-State Electrochromic Devices Based on SnO2/NiO doped with Tin
We investigated the photochromic (PC) and electrochromic (EC) properties of tin-doped nickel oxide (NiO) thin films for solution-processable all-solid-state EC devices. The PC effect is shown to be enhanced by the addition of Sn into the precursor NiO solution. We fabricated an EC device with six layers—ITO/TiO2 (counter electrode)/SnO2 (ion-conducting layer)/SiO2 (barrier)/NiO doped with tin (EC layer)/ITO—by a hybrid fabrication process (sputtering for ITO and TiO2, sol–gel spin coating for SnO2 and NiO). The EC effect was also observed to be improved with the Sn-doped NiO layer. It was demonstrated that UV/O3 treatment is one of the critical processes that determine the EC performance of the hydroxide ion-based device. UV/O3 treatment generates hydroxide ions, induces phase separation from a single mixture of SnO2 and silicone oil, and improves the surface morphology of the films, thereby boosting the performance of EC devices. EC performance can be enhanced further by optimizing the thickness of TiO2 and SiO2 layers. Specifically, the SiO2 barrier blocks the transport of charges, bringing in an increase in anodic coloration. We achieved the transmittance modulation of 38.3% and the coloration efficiency of 39.7 cm2/C. We also evaluated the heat resistance of the all-solid-state EC device and found that the transmittance modulation was decreased by 36% from its initial value at 100 °C. Furthermore, we demonstrated that a large-area EC device can be fabricated using slot-die coating without much compromise on EC performance
Shank2 deletion in parvalbumin neurons leads to moderate hyperactivity, enhanced self-grooming and suppressed seizure susceptibility in mice
Shank2 is an abundant postsynaptic scaffolding protein implicated in neurodevelopmental and psychiatric disorders, including autism spectrum disorders (ASD). Deletion of Shank2 in mice has been shown to induce social deficits, repetitive behaviors, and hyperactivity, but the identity of the cell types that contribute to these phenotypes has remained unclear. Here, we report a conditional mouse line with a Shank2 deletion restricted to parvalbumin (PV)-positive neurons (Pv-Cre;Shank2fl/fl mice). These mice display moderate hyperactivity in both novel and familiar environments and enhanced self-grooming in novel, but not familiar, environments. In contrast, they showed normal levels of social interaction, anxiety-like behavior, and learning and memory. Basal brain rhythms in Pv-Cre;Shank2fl/fl mice, measured by electroencephalography, were normal, but susceptibility to pentylenetetrazole (PTZ)-induced seizures was decreased. These results suggest that Shank2 deletion in PV-positive neurons leads to hyperactivity, enhanced self-grooming and suppressed brain excitation. © 2018 Lee, Lee, Kim, Kim, Lee, Park, Yang, Kim and Ki
tRNA engineering strategies for genetic code expansion
The advancement of genetic code expansion (GCE) technology is attributed to the establishment of specific aminoacyl-tRNA synthetase/tRNA pairs. While earlier improvements mainly focused on aminoacyl-tRNA synthetases, recent studies have highlighted the importance of optimizing tRNA sequences to enhance both unnatural amino acid incorporation efficiency and orthogonality. Given the crucial role of tRNAs in the translation process and their substantial impact on overall GCE efficiency, ongoing efforts are dedicated to the development of tRNA engineering techniques. This review explores diverse tRNA engineering approaches and provides illustrative examples in the context of GCE, offering insights into the user-friendly implementation of GCE technology
Robust imaging approach for precise prediction of postoperative lung function in lung cancer patients prior to curative operation
Abstract Background To create a combined variable integrating both ventilation and perfusion as measured by preoperative dual‐energy computed tomography (DECT), compare the results with predicted postoperative (PPO) lung function as estimated using conventional methods, and assess agreement with actual postoperative lung function. Methods A total of 33 patients with lung cancer who underwent curative surgery after DECT and perfusion scan were selected. Ventilation and perfusion values were generated from DECT data. In the “combined variable method,” these two variables and clinical variables were linearly regressed to estimate PPO lung function. Six PPO lung function parameters (segment counting, perfusion scan, volume analysis, ventilation map, perfusion map, and combined variable) were compared with actual postoperative lung function using an intraclass correlation coefficient (ICC). Results The segment counting method produced the highest ICC for forced vital capacity (FVC) at 0.93 (p < 0.05), while the segment counting and perfusion map methods produced the highest ICC for forced expiratory volume in 1 second (FEV1; both 0.89, p < 0.05). The highest ICC value when using the combined variable method was for FEV1/FVC (0.75, p < 0.05) and diffusing capacity of the lung for carbon monoxide (DLco; 0.80, p < 0.05) when using the perfusion map method. Overall, the perfusion map and ventilation map provided the best performance, followed by volume analysis, segment counting, perfusion scan, and the combined variable. Conclusions Use of DECT image processing to predict postoperative lung function produced better agreement with actual postoperative lung function than conventional methods. The combined variable method produced ICC values of 0.8 or greater for FVC and FEV1
- …