1,303 research outputs found
Surveying the Effects of Limitations on Taxes and Expenditures: What Do/Don’t We Know?
The literature on tax and expenditure limitations (TELs) is extensive and continues to grow, as the impact of these institutional constraints on fiscal and economic outcomes continues to develop. In this survey, we review the literature of state- and local-level TELs, in an attempt to provide an overview of their theoretical, operational, and empirical contexts. The study concludes with a discussion of future TEL research needs
Biological and physical controls on the flux and characteristics of sinking particles on the Northwest Atlantic margin
Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 4539–4553, doi:10.1002/2016JC012549.Biogenic matter characteristics and radiocarbon contents of organic carbon (OC) were examined on sinking particle samples intercepted at three nominal depths of 1000 m, 2000 m, and 3000 m (∼50 m above the seafloor) during a 3 year sediment trap program on the New England slope in the Northwest Atlantic. We have sought to characterize the sources of sinking particles in the context of vertical export of biogenic particles from the overlying water column and lateral supply of resuspended sediment particles from adjacent margin sediments. High aluminum (Al) abundances and low OC radiocarbon contents indicated contributions from resuspended sediment which was greatest at 3000 m but also significant at shallower depths. The benthic source (i.e., laterally supplied resuspended sediment) of opal appears negligible based on the absence of a correlation with Al fluxes. In comparison, CaCO3 fluxes at 3000 m showed a positive correlation with Al fluxes. Benthic sources accounted for 42 ∼ 63% of the sinking particle flux based on radiocarbon mass balance and the relationship between Al flux and CaCO3 flux. Episodic pulses of Al at 3000 m were significantly correlated with the near-bottom current at a nearby hydrographic mooring site, implying the importance of current variability in lateral particle transport. However, Al fluxes at 1000 m and 2000 m were coherent but differed from those at 3000 m, implying more than one mode of lateral supply of particles in the water column.NSF Ocean Sciences Chemical Oceanography program Grant Numbers: OCE-0425677, OCE-0851350;
Ocean and Climate Change Institute of WHOI2017-12-0
Interplay of the forces governing steroid hormone micropollutant adsorption in vertically-aligned carbon nanotube membrane nanopores
Vertically-aligned carbon nanotube (VaCNT) membranes allow water to conduct rapidly at low pressures and open up the possibility for water purification and desalination, although the ultralow viscous stress in hydrophobic and low-tortuosity nanopores prevents surface interactions with contaminants. In this experimental investigation, steroid hormone micropollutant adsorption by VaCNT membranes is quantified and explained via the interplay of the hydrodynamic drag and friction forces acting on the hormone, and the adhesive and repulsive forces between the hormone and the inner carbon nanotube wall. It is concluded that a drag force above 2.2 × 10 pN overcomes the friction force resulting in insignificant adsorption, whereas lowering the drag force from 2.2 × 10 to 4.3 × 10 pN increases the adsorbed mass of hormones from zero to 0.4 ng cm. At a low drag force of 1.6 × 10 pN, the adsorbed mass of four hormones is correlated with the hormone−wall adhesive (van der Waals) force. These findings explain micropollutant adsorption in nanopores via the forces acting on the micropollutant along and perpendicular to the flow, which can be exploited for selectivity
Pregnancy outcomes related to the treatment of sarcomas with anthracyclines and/or ifosfamide during pregnancy
BACKGROUND: Sarcomas are rare diagnoses but are seen with relative frequency in adolescents and young adults and thus can present in pregnancy. We sought to study the administration of anthracyclines and/or ifosfamide in pregnancy-associated sarcomas.
PATIENTS AND METHODS: We conducted a multi-institutional retrospective study, identifying sarcoma patients who received anthracyclines and/or ifosfamide during pregnancy. Chart review identified variables related to demographics, cancer diagnosis, therapies, and outcome of the patient and fetus. Wilcoxon rank-sum test compared two independent samples.
RESULTS: We identified 13 patients at seven institutions with sarcoma who received anthracyclines and/or ifosfamide during pregnancy, including four bone sarcomas and nine soft tissue sarcomas diagnosed at a mean gestational age of 16.7 ± 5.9 weeks. Only nine patients had live births (9/13, 69.2%), with mean gestational age of 30.8 ± 3.8 weeks at delivery. The four patients with pregnancy loss all received both doxorubicin and ifosfamide, with chemotherapy initiated at 15.5 weeks as compared with 21.3 weeks for those patients with live births (p = 0.016).
CONCLUSION: In this multi-institutional study of sarcoma chemotherapy regimens administered during pregnancy, we found a high rate of fetal demise that was seen only in patients receiving both doxorubicin and ifosfamide and statistically more likely with chemotherapy initiation earlier in the second trimester. While limited by a small sample size, our study represents the largest study of sarcoma patients that received anthracyclines and/or ifosfamide in pregnancy thus far reported and supports development of an international registry to study concerns raised by our study
A phase II trial of bendamustine in combination with rituximab in older patients with previously untreated diffuse large B-cell lymphoma
Bendamustine in combination with rituximab (BR) has been associated with high response rates and acceptable toxicity in older patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Evaluation of BR is warranted in the front-line setting for DLBCL patients not eligible for anthracyclines or for the elderly. In this phase II study, we enrolled DLBCL patients aged ≥65 years who were poor candidates for R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) to determine the efficacy and safety of BR in previously untreated stage II–IV DLBCL. Twenty-three patients were enrolled with a median age of 80 years. 52% of patients presented with poor functional status (Eastern Cooperative Oncology Group performance score of ≥2). The overall response rate was 78% with 12 complete responses (52%). At a median follow up of 29 months, the median overall survival was 10.2 months and the median progression-free survival was 5.4 months. The most common grade 3/4 adverse events were haematological. Combination therapy with BR demonstrates high response rates as front-line therapy in frail older patients with DLBCL, but survival rates were low. BR should be used with caution in future clinical trials involving older DLBCL patients with poor functional status
Social learning and amygdala disruptions in Nf1 mice are rescued by blocking p21-activated kinase
Children with Neurofibromatosis type 1 (NF1) are increasingly recognized to have high prevalence of social difficulties and autism spectrum disorders (ASD). We demonstrated selective social learning deficit in mice with deletion of a single Nf1 gene (Nf1+/−), along with greater activation of mitogen activated protein kinase pathway in neurons from amygdala and frontal cortex, structures relevant to social behaviors. The Nf1+/− mice showed aberrant amygdala glutamate/GABA neurotransmissiondeficits in long-term potentiationand specific disruptions in expression of two proteins associated with glutamate and GABA neurotransmission: a disintegrin and metalloprotease domain 22 (ADAM22) and heat shock protein 70 (HSP70), respectively. All of these amygdala disruptions were normalized by co-deletion of p21 protein-activated kinase (Pak1) gene. We also rescued the social behavior deficits in Nf1+/− mice with pharmacological blockade of Pak1 directly in the amygdala. These findings provide novel insights and therapeutic targets for NF1 and ASD patients
Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.
BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth
Stage-Specific Inhibition of MHC Class I Presentation by the Epstein-Barr Virus BNLF2a Protein during Virus Lytic Cycle
gamma-herpesvirus Epstein-Barr virus (EBV) persists for life in infected individuals despite the presence of a strong immune response. During the lytic cycle of EBV many viral proteins are expressed, potentially allowing virally infected cells to be recognized and eliminated by CD8+ T cells. We have recently identified an immune evasion protein encoded by EBV, BNLF2a, which is expressed in early phase lytic replication and inhibits peptide- and ATP-binding functions of the transporter associated with antigen processing. Ectopic expression of BNLF2a causes decreased surface MHC class I expression and inhibits the presentation of indicator antigens to CD8+ T cells. Here we sought to examine the influence of BNLF2a when expressed naturally during EBV lytic replication. We generated a BNLF2a-deleted recombinant EBV (ΔBNLF2a) and compared the ability of ΔBNLF2a and wild-type EBV-transformed B cell lines to be recognized by CD8+ T cell clones specific for EBV-encoded immediate early, early and late lytic antigens. Epitopes derived from immediate early and early expressed proteins were better recognized when presented by ΔBNLF2a transformed cells compared to wild-type virus transformants. However, recognition of late antigens by CD8+ T cells remained equally poor when presented by both wild-type and ΔBNLF2a cell targets. Analysis of BNLF2a and target protein expression kinetics showed that although BNLF2a is expressed during early phase replication, it is expressed at a time when there is an upregulation of immediate early proteins and initiation of early protein synthesis. Interestingly, BNLF2a protein expression was found to be lost by late lytic cycle yet ΔBNLF2a-transformed cells in late stage replication downregulated surface MHC class I to a similar extent as wild-type EBV-transformed cells. These data show that BNLF2a-mediated expression is stage-specific, affecting presentation of immediate early and early proteins, and that other evasion mechanisms operate later in the lytic cycle
Phase 1 trial of rituximab, lenalidomide, and ibrutinib in previously untreated follicular lymphoma: Alliance A051103
Chemoimmunotherapy in follicular lymphoma is associated with significant toxicity. Targeted therapies are being investigated as potentially more efficacious and tolerable alternatives for this multiply-relapsing disease. Based on promising activity with rituximab and lenalidomide in previously untreated follicular lymphoma (overall response rate [ORR] 90%-96%) and ibrutinib in relapsed disease (ORR 30%-55%), the Alliance for Clinical Trials in Oncology conducted a phase 1 trial of rituximab, lenalidomide, and ibrutinib. Previously untreated patients with follicular lymphoma received rituximab 375 mg/m 2 on days 1, 8, 15, and 22 of cycle 1 and day 1 of cycles 4, 6, 8, and 10; lenalidomide as per cohort dose on days 1 to 21 of 28 for 18 cycles; and ibrutinib as per cohort dose daily until progression. Dose escalation used a 3+3 design from a starting dose level (DL) of lenalidomide 15 mg and ibrutinib 420 mg (DL0) to DL2 (lenalidomide 20 mg, ibrutinib 560 mg). Twenty-two patients were enrolled; DL2 was determined to be the recommended phase II dose. Although no protocol-defined dose-limiting toxicities were reported, a high incidence of rash was observed (all grades 82%, grade 3 36%). Eleven patients (50%) required dose reduction, 7 because of rash. The ORR for the entire cohort was 95%, and the 12-month progression-free survival was 80% (95% confidence interval, 57%-92%). Five patients developed new malignancies; 3 had known risk factors before enrollment. Given the increased toxicity and required dose modifications, as well as the apparent lack of additional clinical benefit to the rituximab-lenalidomide doublet, further investigation of the regimen in this setting seems unwarranted. The study was registered with www.ClinicalTrials.gov as #NCT01829568
- …