4,524 research outputs found

    Effect of current step-down on the growth and hardness of PEO coatings on Al6061 alloy

    Get PDF
    AbstractIn this study, plasma electrolytic oxidation (PEO) treatments were conducted on Al6061 plates using silicate containing alkaline electrolyte. The hardness variation with the growth of the PEO coating was investigated under two different regimes of applied AC current. The first was a continuous supply with a constant current density of 500mA/cm2 for 60 or 90min. The other was a current supply of 500mA/cm2 for 60min followed by a current step-down to 200mA/cm2 and continuous treatment for 30min. In the case of a constant current for 60min, the coating thickness and Vickers hardness increased to 150μm and 1300 Hv, respectively. With further processing in the same manner, the coating grew thicker while its hardness gradually decreased to 900 Hv. In the case of a current step-down, no significant thickness increase was observed, but there was a hardness increase up to 1800 Hv. Analysis of the PEO coatings by SEM/EDS and XRD revealed that all their function layers were comprised mainly of α-Al2O3 with hardness dependent on density. The current step-down method contributes to the densification of the function layer in a PEO coating, and thus increases the hardness

    Effect of a Er, Cr:YSGG laser and a Er:YAG laser treatment on oral biofilm-contaminated titanium

    Get PDF
    Implant surface decontamination is a challenging procedure for therapy of peri-implant disease. Objective: This study aimed to compare the effectiveness of decontamination on oral biofilm-contaminated titanium surfaces in Er:YAG laser, Er, Cr:YSGG laser, and plastic curette. Methodology: For oral biofilms formation, six participants wore an acrylic splint with eight titanium discs in the maxillary arch for 72 hours. A total of 48 contaminated discs were distributed among four groups: untreated control; decontamination with plastic curettes; Er, Cr:YSGG laser; and Er:YAG laser irradiation. Complete plaque removal was estimated using naked-eye and the time taken was recorded; the residual plaque area was measured and the morphological alteration of the specimen surface was observed by scanning electron microscopy. The total bacterial load and the viability of adherent bacteria were quantified by live or dead cell labeling with fluorescence microscopy. Results: The mean treatment time significantly decreased based on the treatment used in the following order: Er:YAG, Er, Cr:YSGG laser, and plastic curettes (234.9±25.4 sec, 156.1±12.7 sec, and 126.4±18.6 sec, P=0.000). The mean RPA in the Er, Cr:YSGG laser group (7.0±2.5%) was lower than Er:YAG and plastic curettes groups (10.3±2.4%, 12.3±3.6%, p=0.023). The viable bacteria on the titanium surface after Er, Cr:YSGG laser irradiation was significantly lower compared to the decontamination with plastic curette (P=0.05) but it was not significantly different from the Er:YAG laser irradiation. Conclusion: We found that Er:YAG laser and Er, Cr:YSGG laser irradiation were effective methods for decontaminations without surface alterations

    Constitutively active FOXO1 diminishes activin induction of Fshb transcription in immortalized gonadotropes.

    Get PDF
    In the present study, we investigate whether the FOXO1 transcription factor modulates activin signaling in pituitary gonadotropes. Our studies show that overexpression of constitutively active FOXO1 decreases activin induction of murine Fshb gene expression in immortalized LβT2 cells. We demonstrate that FOXO1 suppression of activin induction maps to the -304/-95 region of the Fshb promoter containing multiple activin response elements and that the suppression requires the FOXO1 DNA-binding domain (DBD). FOXO1 binds weakly to the -125/-91 region of the Fshb promoter in a gel-shift assay. Since this region of the promoter contains a composite SMAD/FOXL2 binding element necessary for activin induction of Fshb transcription, it is possible that FOXO1 DNA binding interferes with SMAD and/or FOXL2 function. In addition, our studies demonstrate that FOXO1 directly interacts with SMAD3/4 but not SMAD2 in a FOXO1 DBD-dependent manner. Moreover, we show that SMAD3/4 induction of Fshb-luc and activin induction of a multimerized SMAD-binding element-luc are suppressed by FOXO1 in a DBD-dependent manner. These results suggest that FOXO1 binding to the proximal Fshb promoter as well as FOXO1 interaction with SMAD3/4 proteins may result in decreased activin induction of Fshb in gonadotropes

    DPRS transformer - Dynamic pressure resistant system - Part I

    Get PDF
    In general, a transformer is designed and manufactured to operate under normal conditions. However, unexpected fault events occur due to various reasons in real-life substations. When such events do occur, an electric arc inside a transformer vaporizes the insulating oil, leading to a generation of very high expansion pressure. Once this pressure exceeds the designed threshold, the tank is then compromised, and oil starts to leak, becoming a potential cause of fire or explosion. DPRS (Dynamic Pressure Resistant System) transformer has been developed to cope with such unexpected events. In general, a PRD (Pressure Relief Device) is installed on a transformer to stabilize the pressure inside the tank. However, it requires a certain amount of time for this device to operate. DPRS transformer is designed to withstand the immediate pressure increase without severely damaging the tank (severe enough to cause an oil leak) until the PRD starts operating. Although not as much as to cause a leak, the tank will still be deformed as a result of the pressure increase. Then, insulating oil expanded by the arc is emitted safely through a designated path as the PRD starts to operate. DPRS transformer does not require additional equipment to prevent damage to the tank and is also capable of preventing fire while maintaining a similar configuration to common transformers. Due to these merits, the global demand for DPRS transformers is steadily increasing. In this article, the DPRS transformer tank design procedure and tank deformation prediction technology are presented. Additionally, a brief introduction to the explosion-proof performance verification test is addressed

    NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor β1 production

    Get PDF
    Although NKT cells has been known to exert protective roles in the development of autoimmune diseases, the functional roles of NKT cells in the downstream events of antibody-induced joint inflammation remain unknown. Thus, we explored the functional roles of NKT cells in antibody-induced arthritis using the K/BxN serum transfer model. NKT cell–deficient mice were resistant to the development of arthritis, and wild-type mice administrated with α-galactosyl ceramide, a potent NKT cell activator, aggravated arthritis. In CD1d−/− mice, transforming growth factor (TGF)-β1 was found to be elevated in joint tissues, and the blockade of TGF-β1 using neutralizing monoclonal antibodies restored arthritis. The administration of recombinant TGF-β1 into C57BL/6 mice reduced joint inflammation. Moreover, the adoptive transfer of NKT cells into CD1d−/− mice restored arthritis and reduced TGF-β1 production. In vitro assay demonstrated that interleukin (IL)-4 and interferon (IFN)-γ were involved in suppressing TGF-β1 production in joint cells. The adoptive transfer of NKT cells from IL-4−/− or IFN-γ−/− mice did not reverse arthritis and TGF-β1 production in CD1d−/− mice. In conclusion, NKT cells producing IL-4 and IFN-γ play a role in immune complex–induced joint inflammation by regulating TGF-β1
    corecore