15 research outputs found
Corrigendum to: “Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis” [J Hepatol (2020) 241-251]
It has come to our attention that there are errors in the Table 2 of the original manuscript “Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis”. The Variance Explained for SNP rs738409 has been incorrectly reported as 0.9. The correct value is 0.29. The amino acid changes for SNPs rs111723834, rs58542926 and rs738409 have been incorrectly reported as A561G, I148M and E167K, respectively. The correct amino acid changes are R561Q, E167K and I148M, respectively. SNP rs4820268 variant type (synonymous) and amino acid change (D521D) have also been corrected. Please see the corrected Table 2 below. These errors have occured during manual editing of the table and do not affect the results and conclusions of this article. The authors would like to apologise for any inconvenience caused
Weight Change and the Onset of Cardiovascular Diseases: Emulating Trials Using Electronic Health Records.
BACKGROUND: Cross-sectional measures of body mass index (BMI) are associated with cardiovascular disease (CVD) incidence, but less is known about whether weight change affects the risk of CVD. METHODS: We estimated the effect of 2-y weight change interventions on 7-y risk of CVD (CVD death, myocardial infarction, stroke, hospitalization from coronary heart disease, and heart failure) by emulating hypothetical interventions using electronic health records. We identified 138,567 individuals with 45-69 years of age without chronic disease in England from 1998 to 2016. We performed pooled logistic regression, using inverse-probability weighting to adjust for baseline and time-varying confounders. We categorized each individual into a weight loss, maintenance, or gain group. RESULTS: Among those of normal weight, both weight loss [risk difference (RD) vs. weight maintenance = 1.5% (0.3% to 3.0%)] and gain [RD = 1.3% (0.5% to 2.2%)] were associated with increased risk for CVD compared with weight maintenance. Among overweight individuals, we observed moderately higher risk of CVD in both the weight loss [RD = 0.7% (-0.2% to 1.7%)] and the weight gain group [RD = 0.7% (-0.1% to 1.7%)], compared with maintenance. In the obese, those losing weight showed lower risk of coronary heart disease [RD = -1.4% (-2.4% to -0.6%)] but not of stroke. When we assumed that chronic disease occurred 1-3 years before the recorded date, estimates for weight loss and gain were attenuated among overweight individuals; estimates for loss were lower among obese individuals. CONCLUSION: Among individuals with obesity, the weight-loss group had a lower risk of coronary heart disease but not of stroke. Weight gain was associated with increased risk of CVD across BMI groups. See video abstract at, http://links.lww.com/EDE/B838
A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service.
Background: To effectively prevent, detect, and treat health conditions that affect people during their lifecourse, health-care professionals and researchers need to know which sections of the population are susceptible to which health conditions and at which ages. Hence, we aimed to map the course of human health by identifying the 50 most common health conditions in each decade of life and estimating the median age at first diagnosis. Methods: We developed phenotyping algorithms and codelists for physical and mental health conditions that involve intensive use of health-care resources. Individuals older than 1 year were included in the study if their primary-care and hospital-admission records met research standards set by the Clinical Practice Research Datalink and they had been registered in a general practice in England contributing up-to-standard data for at least 1 year during the study period. We used linked records of individuals from the CALIBER platform to calculate the sex-standardised cumulative incidence for these conditions by 10-year age groups between April 1, 2010, and March 31, 2015. We also derived the median age at diagnosis and prevalence estimates stratified by age, sex, and ethnicity (black, white, south Asian) over the study period from the primary-care and secondary-care records of patients. Findings: We developed case definitions for 308 disease phenotypes. We used records of 2 784 138 patients for the calculation of cumulative incidence and of 3 872 451 patients for the calculation of period prevalence and median age at diagnosis of these conditions. Conditions that first gained prominence at key stages of life were: atopic conditions and infections that led to hospital admission in children (<10 years); acne and menstrual disorders in the teenage years (10-19 years); mental health conditions, obesity, and migraine in individuals aged 20-29 years; soft-tissue disorders and gastro-oesophageal reflux disease in individuals aged 30-39 years; dyslipidaemia, hypertension, and erectile dysfunction in individuals aged 40-59 years; cancer, osteoarthritis, benign prostatic hyperplasia, cataract, diverticular disease, type 2 diabetes, and deafness in individuals aged 60-79 years; and atrial fibrillation, dementia, acute and chronic kidney disease, heart failure, ischaemic heart disease, anaemia, and osteoporosis in individuals aged 80 years or older. Black or south-Asian individuals were diagnosed earlier than white individuals for 258 (84%) of the 308 conditions. Bone fractures and atopic conditions were recorded earlier in male individuals, whereas female individuals were diagnosed at younger ages with nutritional anaemias, tubulointerstitial nephritis, and urinary disorders. Interpretation: We have produced the first chronological map of human health with cumulative-incidence and period-prevalence estimates for multiple morbidities in parallel from birth to advanced age. This can guide clinicians, policy makers, and researchers on how to formulate differential diagnoses, allocate resources, and target research priorities on the basis of the knowledge of who gets which diseases when. We have published our phenotyping algorithms on the CALIBER open-access Portal which will facilitate future research by providing a curated list of reusable case definitions. Funding: Wellcome Trust, National Institute for Health Research, Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Department of Health and Social Care (England), Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), Economic and Social Research Council, Engineering and Physical Sciences Research Council, National Institute for Social Care and Health Research, and The Alan Turing Institute
Data-driven identification of ageing-related diseases from electronic health records.
Reducing the burden of late-life morbidity requires an understanding of the mechanisms of ageing-related diseases (ARDs), defined as diseases that accumulate with increasing age. This has been hampered by the lack of formal criteria to identify ARDs. Here, we present a framework to identify ARDs using two complementary methods consisting of unsupervised machine learning and actuarial techniques, which we applied to electronic health records (EHRs) from 3,009,048 individuals in England using primary care data from the Clinical Practice Research Datalink (CPRD) linked to the Hospital Episode Statistics admitted patient care dataset between 1 April 2010 and 31 March 2015 (mean age 49.7 years (s.d. 18.6), 51% female, 70% white ethnicity). We grouped 278 high-burden diseases into nine main clusters according to their patterns of disease onset, using a hierarchical agglomerative clustering algorithm. Four of these clusters, encompassing 207 diseases spanning diverse organ systems and clinical specialties, had rates of disease onset that clearly increased with chronological age. However, the ages of onset for these four clusters were strikingly different, with median age of onset 82 years (IQR 82-83) for Cluster 1, 77 years (IQR 75-77) for Cluster 2, 69 years (IQR 66-71) for Cluster 3 and 57 years (IQR 54-59) for Cluster 4. Fitting to ageing-related actuarial models confirmed that the vast majority of these 207 diseases had a high probability of being ageing-related. Cardiovascular diseases and cancers were highly represented, while benign neoplastic, skin and psychiatric conditions were largely absent from the four ageing-related clusters. Our framework identifies and clusters ARDs and can form the basis for fundamental and translational research into ageing pathways
Health and population effects of rare gene knockouts in adult humans with related parents.
Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.The study was funded by the Wellcome Trust (WT102627 and WT098051), Barts Charity (845/1796), Medical Research Council (MR/M009017/1). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber. Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597). V.N. was supported by the Wellcome Trust PhD Studentship (WT099769). D.G.M. and K.K. were supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM104371. E.R.M. is funded by NIHR Cambridge Biomedical Research Centre. H.H. is supported by awards to establish the Farr Institute of Health Informatics Research, London, from the Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office, Economic and Social Research Council, Engineering and Physical Sciences Research Council, NIHR, National Institute for Social Care and Health Research, and Wellcome Trust.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via https://doi.org/10.1126/science.aac862
An informatics consult approach for generating clinical evidence for treatment decisions.
BACKGROUND: An Informatics Consult has been proposed in which clinicians request novel evidence from large scale health data resources, tailored to the treatment of a specific patient. However, the availability of such consultations is lacking. We seek to provide an Informatics Consult for a situation where a treatment indication and contraindication coexist in the same patient, i.e., anti-coagulation use for stroke prevention in a patient with both atrial fibrillation (AF) and liver cirrhosis. METHODS: We examined four sources of evidence for the effect of warfarin on stroke risk or all-cause mortality from: (1) randomised controlled trials (RCTs), (2) meta-analysis of prior observational studies, (3) trial emulation (using population electronic health records (N = 3,854,710) and (4) genetic evidence (Mendelian randomisation). We developed prototype forms to request an Informatics Consult and return of results in electronic health record systems. RESULTS: We found 0 RCT reports and 0 trials recruiting for patients with AF and cirrhosis. We found broad concordance across the three new sources of evidence we generated. Meta-analysis of prior observational studies showed that warfarin use was associated with lower stroke risk (hazard ratio [HR] = 0.71, CI 0.39-1.29). In a target trial emulation, warfarin was associated with lower all-cause mortality (HR = 0.61, CI 0.49-0.76) and ischaemic stroke (HR = 0.27, CI 0.08-0.91). Mendelian randomisation served as a drug target validation where we found that lower levels of vitamin K1 (warfarin is a vitamin K1 antagonist) are associated with lower stroke risk. A pilot survey with an independent sample of 34 clinicians revealed that 85% of clinicians found information on prognosis useful and that 79% thought that they should have access to the Informatics Consult as a service within their healthcare systems. We identified candidate steps for automation to scale evidence generation and to accelerate the return of results. CONCLUSION: We performed a proof-of-concept Informatics Consult for evidence generation, which may inform treatment decisions in situations where there is dearth of randomised trials. Patients are surprised to know that their clinicians are currently not able to learn in clinic from data on 'patients like me'. We identify the key challenges in offering such an Informatics Consult as a service
Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
Background & Aims: Excess liver iron content is common and is linked to hepatic and extrahepatic disease risk. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases.
Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals in UK Biobank with MRI quantified liver iron, and validated our findings in an independent cohort (n=1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 29 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 anthropometric traits and diseases.
Results: We identified three independent genetic variants (rs1800562 (C282Y) and rs1799945 (H63D) in HFE and rs855791 (V736A) in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p<5x10-8). The two HFE variants account for ~85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease.
Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases