72 research outputs found

    A generalized Kiselev crossover approach applied to Soave–Redlich–Kwong equation of state

    No full text
    International audienceThree different variants of the crossover Soave–Redlich–Kwong equation of state are applied to describe the equilibrium behaviour of 72 common non-associating fluids – 27 hydrocarbons (including the first 10 n-alkanes), 36 halogenated refrigerants, 5 cryogenics (fluorine, oxygen, nitrogen, argon and carbon monoxide) and 4 other industrially important inorganic fluids (carbon dioxide, sulfur dioxide, nitrous oxide and sulfur hexafluoride). The model contains six compound dependent parameters.Two of them (a0 and b of the classical part) are adjusted on the critical experimental temperature and the critical pressure. In a first model denoted as model A, the four remaining parameters are fitted to describe the saturated liquid and vapour densities and vapor pressures as well as PVT data at pressures up to P = 3 × Pc. In the second model (model B), the dispersion softness m is expressed as a function of the acentric factor ω and a relation between two of the crossover parameters is employed; the number of fitted parameters is thus reduced to two. Based on model B, we suggested our final Model C, in which all the parameters can be determined from the critical point, acentric factor or rectlinear diameter. This model is superior to the classical Soave–Redlich–Kwong equation of state because it improves considerably the description of the liquid densities over the whole coexistence region. Contrary to equations of state optimized to reproduce the liquid densities at low temperatures, the crossover equation does not overpredict the critical temperature and pressure. Model C is applied to describe the equilibrium behaviour of two compounds not included in the parameterization, hexafluoropropene (HFO1216) and hexafluoropropene oxide (HFPO)

    Modeling of Transport Properties Using the SAFT-VR Mie Equation of State

    No full text
    International audienceCarbon capture and storage (CCS) has been presented as one of the most promising methods to counterbalance the CO 2 emissions from the combustion of fossil fuels. Density, viscosity and interfacial tension (IFT) are, among others properties, crucial for the safe and optimum transport and storage of CO 2-rich steams and they play a key role in enhanced oil recovery (EOR) operations. Therefore, in the present work the capability of a new molecular based equation of state (EoS) to describe these properties was evaluated by comparing the model predictions against literature experimental data. The EoS considered herein is based on an accurate statistical associating fluid theory with variable range interaction through Mie potentials (SAFT-VR Mie EoS). The EoS was used to describe the vapor-liquid equilibria (VLE) and the densities of selected mixtures. Phase equilibrium calculations are then used to estimate viscosity and interfacial tension values. The viscosity model considered is the TRAPP method using the single phase densities, calculated from the EoS. The IFT was evaluated by coupling this EoS with the density gradient theory of fluids interfaces (DGT). The DGT uses bulk phase properties from the mixture to readily estimate the density distribution of each component across the interface and predict interfacial tension values. To assess the adequacy of the selected models, the modeling results were compared against experimental data of several CO 2-rich systems in a wide range of conditions from the literature. The evaluated systems include five binaries (CO 2 /O 2 , CO 2 /N 2 , CO 2 /Ar, CO 2 /n-C 4 and CO 2 /n-C 10) and two multicomponent mixtures (90%CO 2 / 5%O 2 / 2%Ar / 3%N 2 and 90%CO 2 / 6%n-C 4 / 4%n-C 10). The modeling results showed low percentage absolute average deviations to the experimental viscosity and IFT data from the literature, endorsing the capabilities of the adopted models for describing thermophysical properties of CO 2-rich systems

    Experimental and modelling study of the densities of the hydrogen sulphide + methane mixtures at 253, 273 and 293 K and pressures up to 30 MPa

    Get PDF
    International audienceDensities of three binary mixtures of hydrogen sulphide and methane (xH 2 S + (1-x) CH 4), with mole fractions of 0.1315, 0.1803 and 0.2860 of acid gas, were determined experimentally at three temperatures (253, 273 and 293) K and at pressures up to 30 MPa. Densities were measured continuously using a high temperature and high pressure Vibrating Tube densitometer (VTD), Anton Paar DMA 512. The SAFT-VR Mie, PR and GERG2008 equations of state (EoS) are used to describe the experimental data with different levels of success

    Modeling the phase equilibria of refrigerant fluids with the COSMO-SAC and COSMO-RS approaches. Application to process simulation

    No full text
    International audienceOn account of the constraints imposed by the European and International legislations, the refrigerant industry must constantly find alternative refrigerant fluids that have lower impacts on the global warming of Earth and Ozone layer. Working with refrigerant blends is often preferable to pure component fluids for energy saving and flexibility of operation. In order to select the optimal mixture composition for the design and operation of a refrigeration process, it is necessary to know the phase diagram and thermodynamic properties of mixtures. Vapor-liquid equilibria (VLE) and the location of azeotropes must be accurately known. In this work three different thermodynamic models based on the COSMO approach have been used to predict the phase equilibria of mixtures of refrigerant molecules: the COSMO-RS model developed by Klamt and co workers [1, 2], the 2002 version of COSMO-SAC model [3], and the COSMO-SAC-dsp model [4] that includes a dispersion term. The vapor-liquid equilibria can be reasonably well predicted by the COSMO-RS model, however bad predictions are obtained with COSMO-SAC 2002. In particular, the COSMO-SAC model is unable to predict the azeotropic behavior observed in mixtures of alkanes and fluorinated molecules. By adjusting some universal parameters, it is possible to obtain reasonable predictions with the COSMO-SAC dsp model

    Vapor–Liquid Equilibrium of Ethyl Lactate Highly Diluted in Ethanol–Water Mixtures at 101.3 kPa. Experimental Measurements and Thermodynamic Modeling Using Semiempirical Models

    Get PDF
    A thermodynamic study of the vapor–liquid equilibrium for the ternary system ethyl lactate–ethanol–water was performed at 101.3 kPa and infinite dilution regarding ethyl lactate, for boiling temperatures ranging from (352.3 to 370.0) K. The experimental measurements were carried out with a recirculation still and the equilibrium compositions of ethyl lactate were determined by gas chromatography. The volatility of ethyl lactate decreases when the ethanol content in the liquid phase is increased. The investigated system was correctly correlated by the NRTL and UNIQUAC models, with an average absolute relative deviation below 10%. The comparison with the results obtained from interaction parameters fitted to experimental data of the binary systems ethyl lactate–ethanol and ethyl lactate–water at 101.3 kPa, proves that the parameters calculated in this work give a better description of the ethyl lactate volatility, a key parameter in distillation, at low concentrations. These latter parameters are therefore recommended for process simulation and optimization in alcoholic beverages production

    Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    Get PDF
    International audienceAbsorption of light gases in polyethylene (PE) is studied using two versions of the Statistical Associating Fluid Theory (SAFT): SAFT for chain molecules with attractive potentials of variable range (VR) and simplified perturbed-chain (PC) SAFT. Emphasis is placed on the light gases typically present during ethylene polymerisation in the gas-phase reactor (GPR) process. The two approaches are validated using experimental binary-mixture data for gas absorbed in PE, and predictions are made for mixtures of more components. For most cases studied both SAFT versions perform equally well. For the case of ternary mixtures of two gases with PE, it is predicted that the less-volatile of the two gases acts to enhance the absorption of the more-volatile gas, while the more-volatile gas inhibits the absorption of the less-volatile gas. This general behaviour is also predicted in mixtures containing more gases, such as typical reactor mixtures. The magnitude of the effect may vary considerably, depending on the relative proximity of the gas-mixture saturation pressure to the reactor pressure; for example it is predicted that the absorption of ethylene may be approximately doubled if diluent gases, propane or nitrogen, are partially or completely replaced by less-volatile butane or pentane for a reactor pressure similar to 2 MPa. In the case of a co-polymerisation reaction, it is predicted that increases in absorption of both co-monomers may be obtained in roughly equal proportion. Our findings cast light on the so-called co-monomer effect, in which substantial increases in the rate of ethylene polymerisation are observed in the presence of hexene co-monomer, while suggesting that the effect is more general and not restricted to co-monomer. For example, similar rate increases may be expected in the presence of, e.g., pentane instead of hexene, but without the change in the branch structure of the produced polymer that is inevitable when the amount of co-monomer is increased

    Phase equilibria in polydisperse nonadditive hard-sphere systems

    No full text
    International audienc

    Understanding the fluid phase behaviour of polymer systems with the SAFT theory

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore