14 research outputs found

    An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs), in which the degree of conservation can be comparable with exonic regions suggesting functional significance.</p> <p>Results</p> <p>We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1) supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 <it>in vitro</it>.</p> <p>Conclusion</p> <p>Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a) a strong enhancer that functions in neurons and b) a transcription factor that may modulate the function of that enhancer.</p

    Low Incubation Temperature Induces DNA Hypomethylation in Lizard Brains

    No full text
    Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations. Using a methylation-sensitive AFLP protocol optimized for vertebrates, we demonstrate that this low incubation temperature also causes hypomethylation of DNA in brain tissue. A consistent pattern across methylation-susceptible AFLP loci suggests that hypomethylation is a general response and not limited to certain CpG sites. The functional consequences of hypomethylation are unknown, but it could contribute to genome stability and regulation of gene expression. Further studies of the effects of incubation temperature on DNA methylation in ectotherm vertebrates may reveal mechanisms that explain why the embryonic thermal environment often has physiological and behavioral consequences for offspring

    An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    No full text
    Background: detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs), in which the degree of conservation can be comparable with exonic regions suggesting functional significance. - Results: we identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1) supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. - Conclusion: bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a) a strong enhancer that functions in neurons and b) a transcription factor that may modulate the function of that enhancer

    Impact of exposure to urban air pollution on grey squirrel (Sciurus carolinensis) lung health

    No full text
    The increased rate of global urbanisation has recently exacerbated the significant public health problem of traffic related air pollution. Despite the known significant impact on human health, little is known about the effects of air pollution on wildlife health. The lung is the primary target organ for the effects of exposure to air pollution, leading to lung inflammation, altering the lung epigenome, culminating in respiratory disease. In this study, we aimed to assess lung health and DNA methylation profiles in Eastern grey squirrel (Sciurus carolinensis) populations living across an urban-rural air pollution gradient. Squirrel lung health was assessed in four populations situated across the most polluted inner-city boroughs to the less polluted edges of Greater London. We also assessed lung DNA methylation across three London sites and a further two rural sites in Sussex and North Wales. Lung and tracheal diseases were present in 28% and 13% of the squirrels respectively. Specifically, focal inflammation (13%), focal macrophages with vacuolated cytoplasm (3%) and endogenous lipid pneumonia (3%). There was no significant difference in prevalence of lung, tracheal diseases, anthracosis (carbon presence) or lung DNA methylation levels between urban sites and urban and rural sites respectively or NO2 levels. BALT (Bronchus-Associated Lymphoid Tissue) was significantly smaller in the site with highest NO2 and contained the highest carbon loading compared to sites with lower NO2, however differences in carbon loading in between sites were not significant. High pollution site individuals also had significantly higher numbers of alveolar macrophages which suggests that grey squirrels are exposed to and respond to traffic-related air pollution and further research is needed to understand the impact of traffic-related air pollutants on wildlife health

    Investigation of the <it>ZNF804A</it> gene polymorphism with genetic risk for bipolar disorder in attention deficit hyperactivity disorder

    No full text
    Abstract Background Genome-wide association studies (GWAS) have been conducted on many psychiatric disorders. Evidence from large GWAS indicates that the single nucleotide polymorphism (SNP) rs1344706 in the zinc-finger protein 804A gene (ZNF804A) is associated with psychotic disorders including bipolar disorder and schizophrenia. One study also found significant association between rs1344706 and the executive control network of attention. In this study we examine the role of the rs1344706 polymorphism that previously showed association with BD and is known to alter expression of the gene in two clinical family-based ADHD samples from the UK and Taiwan. Findings To investigate the association between rs1344706 and ADHD, two family samples of ADHD probands from the United Kingdom (n = 180) and Taiwan (n = 212) were genotyped using TaqMan SNP genotyping assays and analysed using within-family transmission disequilibrium test. No significant associations were found between rs1344706 polymorphism and ADHD in either of the samples from Taiwan (P = 0.91) and UK (P = 0.41). Even combining the two datasets together the A allele of rs1344706 SNP was still not significantly over-transmitted to affected probands (P = 0.50). Furthermore, there was no evidence of association with the specific symptoms subgroups of inattention or hyperactivity-impulsivity. Conclusions In this study we used family-based ADHD data in the UK and Taiwanese population to test for an association between rs1344706 SNP in the ZNF804A gene and ADHD. Results showed no significant association of rs1344706 with ADHD in UK and Taiwanese samples.</p

    Investigation of the ZNF804A gene polymorphism with genetic risk for bipolar disorder in attention deficit hyperactivity disorder

    Get PDF
    BACKGROUND: Genome-wide association studies (GWAS) have been conducted on many psychiatric disorders. Evidence from large GWAS indicates that the single nucleotide polymorphism (SNP) rs1344706 in the zinc-finger protein 804A gene (ZNF804A) is associated with psychotic disorders including bipolar disorder and schizophrenia. One study also found significant association between rs1344706 and the executive control network of attention. In this study we examine the role of the rs1344706 polymorphism that previously showed association with BD and is known to alter expression of the gene in two clinical family-based ADHD samples from the UK and Taiwan. FINDINGS: To investigate the association between rs1344706 and ADHD, two family samples of ADHD probands from the United Kingdom (n = 180) and Taiwan (n = 212) were genotyped using TaqMan SNP genotyping assays and analysed using within-family transmission disequilibrium test. No significant associations were found between rs1344706 polymorphism and ADHD in either of the samples from Taiwan (P = 0.91) and UK (P = 0.41). Even combining the two datasets together the A allele of rs1344706 SNP was still not significantly over-transmitted to affected probands (P = 0.50). Furthermore, there was no evidence of association with the specific symptoms subgroups of inattention or hyperactivity-impulsivity. CONCLUSIONS: In this study we used family-based ADHD data in the UK and Taiwanese population to test for an association between rs1344706 SNP in the ZNF804A gene and ADHD. Results showed no significant association of rs1344706 with ADHD in UK and Taiwanese samples

    Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF

    Get PDF
    Two distinct variable number tandem repeats (VNTRs) within the human serotonin transporter gene (SLC6A4) have been implicated as predisposing factors for CNS disorders. The linked polymorphic region in the 5′-promoter exists as short (s) and long (l) alleles of a 22 or 23 bp elements. The second within intron 2 (Stin2) exists as three variants containing 9, 10 or 12 copies of a 16 or 17 bp element. These VNTRs, individually or in combination, supported differential reporter gene expression in rat neonate prefrontal cortical cultures. The level of reporter gene activity from the dual VNTR constructs indicated combinatorial action between the two domains. Chromatin immunoprecipitation demonstrated that both these VNTR domains can bind the CCCTC-binding factor and this correlated with the ability of exogenously supplied CCCTC-binding factor to modulate the expression supported by these reporter gene constructs. We suggest that the potential for interaction between multiple polymorphic domains should be incorporated into genetic association studies. © 2009 International Society for Neurochemistry

    Genome-wide association study of major recurrent depression in the U.K. population

    No full text
    OBJECTIVE: Studies of major depression in twins and families have shown moderate to high heritability, but extensive molecular studies have failed to identify susceptibility genes convincingly. To detect genetic variants contributing to major depression, the authors performed a genome-wide association study using 1,636 cases of depression ascertained in the U.K. and 1,594 comparison subjects screened negative for psychiatric disorders. METHOD: Cases were collected from 1) a case-control study of recurrent depression (the Depression Case Control [DeCC] study; N=1346), 2) an affected sibling pair linkage study of recurrent depression (probands from the Depression Network [DeNT] study; N=332), and 3) a pharmacogenetic study (the Genome-Based Therapeutic Drugs for Depression [GENDEP] study; N=88). Depression cases and comparison subjects were genotyped at Centre National de Génotypage on the Illumina Human610-Quad BeadChip. After applying stringent quality control criteria for missing genotypes, departure from Hardy-Weinberg equilibrium, and low minor allele frequency, the authors tested for association to depression using logistic regression, correcting for population ancestry. RESULTS: Single nucleotide polymorphisms (SNPs) in BICC1 achieved suggestive evidence for association, which strengthened after imputation of ungenotyped markers, and in analysis of female depression cases. A meta-analysis of U.K. data with previously published results from studies in Munich and Lausanne showed some evidence for association near neuroligin 1 (NLGN1) on chromosome 3, but did not support findings at BICC1. CONCLUSIONS: This study identifies several signals for association worthy of further investigation but, as in previous genome-wide studies, suggests that individual gene contributions to depression are likely to have only minor effects, and very large pooled analyses will be required to identify them.Cathryn M. Lewis... Sarah Cohen-Woods... et al
    corecore