989 research outputs found

    Alterations of cardiovascular complexity during acute exposure to high altitude: A multiscale entropy approach

    Get PDF
    Stays at high altitude induce alterations in cardiovascular control and are a model of specific pathological cardiovascular derangements at sea level. However, high-altitude alterations of the complex cardiovascular dynamics remain an almost unexplored issue. Therefore, our aim is to describe the altered cardiovascular complexity at high altitude with a multiscale entropy (MSE) approach. We recorded the beat-by-beat series of systolic and diastolic blood pressure and heart rate in 20 participants for 15 min twice, at sea level and after arrival at 4554 m a.s.l. We estimated Sample Entropy and MSE at scales of up to 64 beats, deriving average MSE values over the scales corresponding to the high-frequency (MSEHF) and low-frequency (MSELF) bands of heart-rate variability. We found a significant loss of complexity at heart-rate and blood-pressure scales complementary to each other, with the decrease with high altitude being concentrated at Sample Entropy and at MSEHF for heart rate and at MSELF for blood pressure. These changes can be ascribed to the acutely increased chemoreflex sensitivity in hypoxia that causes sympathetic activation and hyperventilation. Considering high altitude as a model of pathological states like heart failure, our results suggest new ways for monitoring treatments and rehabilitation protocols

    Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    Get PDF
    Salvi P, Palombo C, Salvi GM, Labat C, Parati G, Benetos A. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J Appl Physiol 115: 1610–1617, 2013. First published September 19, 2013; doi:10.1152/japplphysiol.00475.2013.— Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (25 years, r2 0.043; 25–44 years, r2 0.103; 45–64 years, r2 0.079; 65–84 years, r2 0.044; 85 years, r2 0.022; P 0.0001 for all). A significant (P 0.0001) negative but always weaker correlation between pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P 0.0001). With multiple stepwise regression analysis, left ventricular ejection time and dP/dt remained the only determinant of pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications

    Determination of Baroreflex Sensitivity during the Modified Oxford Maneuver by Trigonometric Regressive Spectral Analysis

    Get PDF
    BACKGROUND: Differences in spontaneous and drug-induced baroreflex sensitivity (BRS) have been attributed to its different operating ranges. The current study attempted to compare BRS estimates during cardiovascular steady-state and pharmacologically stimulation using an innovative algorithm for dynamic determination of baroreflex gain. METHODOLOGY/PRINCIPAL FINDINGS: Forty-five volunteers underwent the modified Oxford maneuver in supine and 60° tilted position with blood pressure and heart rate being continuously recorded. Drug-induced BRS-estimates were calculated from data obtained by bolus injections of nitroprusside and phenylephrine. Spontaneous indices were derived from data obtained during rest (stationary) and under pharmacological stimulation (non-stationary) using the algorithm of trigonometric regressive spectral analysis (TRS). Spontaneous and drug-induced BRS values were significantly correlated and display directionally similar changes under different situations. Using the Bland-Altman method, systematic differences between spontaneous and drug-induced estimates were found and revealed that the discrepancy can be as large as the gain itself. Fixed bias was not evident with ordinary least products regression. The correlation and agreement between the estimates increased significantly when BRS was calculated by TRS in non-stationary mode during the drug injection period. TRS-BRS significantly increased during phenylephrine and decreased under nitroprusside. CONCLUSIONS/SIGNIFICANCE: The TRS analysis provides a reliable, non-invasive assessment of human BRS not only under static steady state conditions, but also during pharmacological perturbation of the cardiovascular system

    Machine Learning Algorithm for Early Detection and Analysis of Brain Tumors Using MRI Images

    Get PDF
    Among the human body's organs, the brain is the most delicate and specialized. It is proven that after the heart stops then also brain death occurs within 3 to 5 minutes of death or within 3 to 5 minutes of loss of oxygen supply. A brain tumor is a life-threatening disease that can be detected at any age from an infant to an old person. Though a lot of people did research in the detection and analysis of a tumor, but then also detecting tumors at the early phase is still a much more arduous field in the biomedical study. This paper focuses on the comparative study of various existing algorithms in this field. This paper addresses the challenges and some issues in MRI brain tumor detection which are also addressed in this research

    A successful experimental model for intimal hyperplasia prevention using a resveratrol eluting balloon

    Get PDF
    Objective: Restenosis due to intimal hyperplasia is a major clinical problem that compromises the success of angioplasty and endovascular surgery. Resveratrol (RSV) has demonstrated a beneficial effect on restenosis from angioplasty. Unfortunately, the physicochemical characteristics of RSV reduce the practicality of its immediate clinical application. This work proposes an experimental model aiming to setup an intravessel, elutable, RSV-containing compound. Methods: A 140 mg/mL RSV sterile injectable solution with a suitable viscosity for intravascular administration by drugdelivery catheter (RSV-c) was prepared. This solution was locally administered in the common iliac artery of adult male New Zealand White rabbits using a dedicated device (Genie; Acrostak, Geneva, Switzerland) after the induction of intimal hyperplasia by traumatic angioplasty. The RSV concentrations in the wall artery were determined, and the thickness of the harvested iliac arteries was measured over a 1-month period. Results: The Genie catheter was applied in rabbit vessels, and the local delivery resulted in an effective reduction in restenosis after plain angioplasty. Notably, RSV-c forced into the artery wall by balloon expansion might accumulate in the interstitial areas or within cells, avoiding the washout of solutions. Magnification micrographs showed intimal proliferation was significantly inhibited when RSV-c was applied. Moreover, no adverse events were documented in in vitro or in vivo studies. Conclusions: RSV can be advantageously administered in the arterial walls by a drug-delivery catheter to reduce the risk of restenosis

    Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials

    Get PDF
    Introduction. Self-monitoring of blood pressure (BP) is an increasingly common part of hypertension management. The objectives of this systematic review were to evaluate the systolic and diastolic BP reduction, and achievement of target BP, associated with self-monitoring. Methods. MEDLINE, Embase, Cochrane database of systematic reviews, database of abstracts of clinical effectiveness, the health technology assessment database, the NHS economic evaluation database, and the TRIP database were searched for studies where the intervention included self-monitoring of BP and the outcome was change in office/ambulatory BP or proportion with controlled BP. Two reviewers independently extracted data. Meta-analysis using a random effects model was combined with meta-regression to investigate heterogeneity in effect sizes. Results. A total of 25 eligible randomized controlled trials (RCTs) (27 comparisons) were identified. Office systolic BP (20 RCTs, 21 comparisons, 5,898 patients) and diastolic BP (23 RCTs, 25 comparisons, 6,038 patients) were significantly reduced in those who self-monitored compared to usual care (weighted mean difference (WMD) systolic −3.82 mmHg (95% confidence interval −5.61 to −2.03), diastolic −1.45 mmHg (−1.95 to −0.94)). Self-monitoring increased the chance of meeting office BP targets (12 RCTs, 13 comparisons, 2,260 patients, relative risk = 1.09 (1.02 to 1.16)). There was significant heterogeneity between studies for all three comparisons, which could be partially accounted for by the use of additional co-interventions. Conclusion. Self-monitoring reduces blood pressure by a small but significant amount. Meta-regression could only account for part of the observed heterogeneity

    Blood pressure variability and cardiovascular risk in the PROspective study of pravastatin in the elderly at risk (PROSPER)

    Get PDF
    Variability in blood pressure predicts cardiovascular disease in young- and middle-aged subjects, but relevant data for older individuals are sparse. We analysed data from the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) study of 5804 participants aged 70–82 years with a history of, or risk factors for cardiovascular disease. Visit-to-visit variability in blood pressure (standard deviation) was determined using a minimum of five measurements over 1 year; an inception cohort of 4819 subjects had subsequent in-trial 3 years follow-up; longer-term follow-up (mean 7.1 years) was available for 1808 subjects. Higher systolic blood pressure variability independently predicted long-term follow-up vascular and total mortality (hazard ratio per 5 mmHg increase in standard deviation of systolic blood pressure = 1.2, 95% confidence interval 1.1–1.4; hazard ratio 1.1, 95% confidence interval 1.1–1.2, respectively). Variability in diastolic blood pressure associated with increased risk for coronary events (hazard ratio 1.5, 95% confidence interval 1.2–1.8 for each 5 mmHg increase), heart failure hospitalisation (hazard ratio 1.4, 95% confidence interval 1.1–1.8) and vascular (hazard ratio 1.4, 95% confidence interval 1.1–1.7) and total mortality (hazard ratio 1.3, 95% confidence interval 1.1–1.5), all in long-term follow-up. Pulse pressure variability was associated with increased stroke risk (hazard ratio 1.2, 95% confidence interval 1.0–1.4 for each 5 mmHg increase), vascular mortality (hazard ratio 1.2, 95% confidence interval 1.0–1.3) and total mortality (hazard ratio 1.1, 95% confidence interval 1.0–1.2), all in long-term follow-up. All associations were independent of respective mean blood pressure levels, age, gender, in-trial treatment group (pravastatin or placebo) and prior vascular disease and cardiovascular disease risk factors. Our observations suggest variability in diastolic blood pressure is more strongly associated with vascular or total mortality than is systolic pressure variability in older high-risk subjects
    • …
    corecore