12 research outputs found

    Phospho-proteomic analysis of tumor samples: The problem of patients stratification and intra-tumor heterogeneity in the era of personalized medicine

    Get PDF
    Nella presente tesi indaghiamo la potenzialità di LCM e Reverse Phase Protein microarray negli studi clinici. Si analizza la possibilità di creare una bio banca con line cellular primarie, al fine di conseguire drug test di sensibilità prima di decidere il trattamento da somministrare ai singoli pazienti. Sono stati ottenuti profili proteomici da biopsie pre e post terapia. I risultati dimostrano che questa piattaforma mostra il meccanismo di resistenza acquisito durante la terapia biologica. Questo ci ha portato ad analizzare una possibile stratificazione per pazienti con mCRC . I dati hanno rivelato distinti pathway di attivazione tra metastasi resecabile e non resecabili. I risultati mostrano inoltre due potenziali bersagli farmacologici. Ma la valutazione dell'intero tumore tramite singole biopsie sembra essere un problema a causa dell’eterogeneità intratumorale a livello genomico. Abbiamo indagato questo problema a livello dell'architettura del segnale in campioni di mCRC e ccRCC . I risultati indicano una somiglianza complessiva nei profili proteomici all'interno dello stesso tumore. Considerando che una singola biopsia è rappresentativa di un intera lesione , abbiamo studiato la possibilità di creare linee di cellule primarie, per valutare il profilo molecolare di ogni paziente. Fino ad oggi non c'era un protocollo per creare linee cellulari immortalizzate senza alcuna variazione genetica . abbiamo cosiderato, però, l'approccio innovativo delle CRCs. Ad oggi , non è ancora chiaro se tali cellule mimino il profilo dei tessuti oppure I passaggi in vitro modifichino i loro pathways . Sulla base di un modello di topo , i nostri dati mostrano un profilo di proteomica simile tra le linee di cellule e tessuti di topo LCM. In conclusione, i nostri dati dimostrano l'utilità della piattaforma LCM / RPPA nella sperimentazione clinica e la possibilità di creare una bio - banca di linee cellulari primarie, per migliorare la decisione del trattamento.In the present thesis we investigate the potentiality of Laser Capture Microdissection (LCM) and Reverse Phase Protein microarray (RPPA) in clinical trials. Also we analyze the possibility to create a primary cell lines bio-bank in order to achieve sensitivity drug tests before to make a treatment decision. Proteomic profiles of pre and post therapy biopsies were obtained from the patients involved in a clinical trial. The results demonstrate that this platform shows the acquired resistance mechanism to the biological therapy. This had led us to discover a better stratification for patient with unresectable colorectal cancer liver metastasis. The RPPA data revealed distinct patterns activation between resectable and unresectable metastasis. Our results show two potential drug targets that could be combined for neo adjuvant treatment. But the evaluation of the whole tumor with single biopsies seems to be a problem due to the genomic intratumor heterogeneity. We investigate this problem in the functional signaling architecture of mCRC and ccRCC. The results indicated an overall similarity in the proteomic profiles within the same tumor. Based on the idea that a single biopsy is representative of a whole lesion, we evaluated the possibility to create primary cell lines, in order to evaluate the molecular profile for each patient for the best personalized therapy. To date there was not a protocol to create immortalized cell lines without any genetic change. We evaluate the innovative approach of the Conditionally Reprogrammed Cells. To date, it is still not clear if those cells mimic the tissue profile or not. Based on a CRC mouse model, our data show a similar proteomic profile between the cell lines and the mouse tissues. In conclusion, our data demonstrate the usefulness of LCM/RPPA platform in clinical trial and the possibility to create a primary cell lines bio-bank to improve treatment decision

    The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells.

    Get PDF
    Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB

    The induction of the p53 tumor suppressor protein bridges the apoptotic and autophagic signaling pathways to regulate cell death in prostate cancer cells.

    Get PDF
    The p53 tumor suppressor protein plays a crucial role in influencing cell fate decisions in response to cellular stress. As p53 elicits cell cycle arrest, senescence or apoptosis, the integrity of the p53 pathway is considered a key determinant of anti-tumor responses. p53 can also promote autophagy, however the role of p53-dependent autophagy in chemosensitivity is poorly understood. VMY-1-103 (VMY), a dansylated analog of purvalanol B, displays rapid and potent anti-tumor activities, however the pathways by which VMY works are not fully defined. Using established prostate cancer cell lines and novel conditionally reprogrammed cells (CRCs) derived from prostate cancer patients; we have defined the mechanisms of VMY-induced prostate cancer cell death. Herein, we show that the cytotoxic effects of VMY required a p53-dependent induction of autophagy, and that inhibition of autophagy abrogated VMY-induced cell death. Cancer cell lines harboring p53 missense mutations evaded VMY toxicity and treatment with a small molecule compound that restores p53 activity re-established VMY-induced cell death. The elucidation of the molecular mechanisms governing VMY-dependent cell death in cell lines, and importantly in CRCs, provides the rationale for clinical studies of VMY, alone or in combination with p53 reactivating compounds, in human prostate cancer

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients

    Protein drug target activation homogeneity in the face of intra-tumor heterogeneity: implications for precision medicine

    Get PDF
    Introduction: Recent studies indicated tumors may be comprised of heterogeneous molecular subtypes and incongruent molecular portraits may emerge if different areas of the tumor are sampled. This study explored the impact of intra-tumoral heterogeneity in terms of activation/phosphorylation of FDA approved drug targets and downstream kinase substrates.Material and methods: Two independent sets of liver metastases from colorectal cancer were used to evaluate protein kinase-driven signaling networks within different areas using laser capture microdissection and reverse phase protein array.Results: Unsupervised hierarchical clustering analysis indicated that the signaling architecture and activation of the MAPK and AKT-mTOR pathways were consistently maintained within different regions of the same biopsy. Intra-patient variability of the MAPK and AKT-mTOR pathway were <1.06 fold change, while inter-patients variability reached fold change values of 5.01.Conclusions: Protein pathway activation mapping of enriched tumor cells obtained from different regions of the same tumor indicated consistency and robustness independent of the region sampled. This suggests a dominant protein pathway network may be activated in a high percentage of the tumor cell population. Given the genomic intra-tumoral variability, our data suggest that protein/phosphoprotein signaling measurements should be integrated with genomic analysis for precision medicine based analysis

    Pilot Phase I/II Personalized Therapy Trial for Metastatic Colorectal Cancer: Evaluating the Feasibility of Protein Pathway Activation Mapping for Stratifying Patients to Therapy with Imatinib and Panitumumab

    No full text
    This nonrandomized phase I/II trial assessed the efficacy/tolerability of imatinib plus panitumumab in patients affected by metastatic colorectal cancer (mCRC) after stratification to treatment by selection of activated imatinib drug targets using reverse-phase protein array (RPPA). mCRC patients presenting with a biopsiable liver metastasis were enrolled. Allocation to the experimental and control arms was established using functional pathway activation mapping of c-Kit, PDGFR, and c-Abl phosphorylation by RPPA. The experimental arm received run-in escalation therapy with imatinib followed by panitumumab. The control arm received panitumumab alone. Seven patients were enrolled in the study. For three of the seven patients, sequential pre- and post-treatment biopsies were used to evaluate the effect of the therapeutic compounds on the drug targets and substrates. A decrease in the activation level of the drug targets and downstream substrates was observed in two of three patients. Combination therapy increased the activation of the AKT–mTOR pathway and several receptor tyrosine kinases. This study proposes a novel methodology for stratifying patients to personalized treatment based on the activation level of the drug targets. This workflow provides the ability to monitor changes in the signaling pathways after the administration of targeted therapies and to identify compensatory mechanisms

    Thermoresponsive release of viable microfiltrated Circulating Tumor Cells (CTCs) for precision medicine applications

    No full text
    Stimulus responsive release of Circulating Tumor Cells (CTCs), with high recovery rates from their capture platform, is highly desirable for off-chip analyses. Here, we present a temperature responsive polymer coating method to achieve both release as well as culture of viable CTCs captured from patient blood samples

    The Sustained Induction of c-MYC Drives Nab-Paclitaxel Resistance in Primary Pancreatic Ductal Carcinoma Cells

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with limited and, very often, ineffective medical and surgical therapeutic options. The treatment of patients with advanced unresectable PDAC is restricted to systemic chemotherapy, a therapeutic intervention to which most eventually develop resistance. Recently, nab-paclitaxel (n-PTX) has been added to the arsenal of first-line therapies, and the combination of gemcitabine and n-PTX has modestly prolonged median overall survival. However, patients almost invariably succumb to the disease, and little is known about the mechanisms underlying n-PTX resistance. Using the conditionally reprogrammed (CR) cell approach, we established and verified continuously growing cell cultures from treatment-naïve patients with PDAC. To study the mechanisms of primary drug resistance, nab-paclitaxel-resistant (n-PTX-R) cells were generated from primary cultures and drug resistance was verified in vivo, both in zebrafish and in athymic nude mouse xenograft models. Molecular analyses identified the sustained induction of c-MYC in the n-PTX-R cells. Depletion of c-MYC restored n-PTX sensitivity, as did treatment with either the MEK inhibitor, trametinib, or a small-molecule activator of protein phosphatase 2a. IMPLICATIONS: The strategies we have devised, including the patient-derived primary cells and the unique, drug-resistant isogenic cells, are rapid and easily applied in vitro and in vivo platforms to better understand the mechanisms of drug resistance and for defining effective therapeutic options on a patient by patient basis
    corecore