77 research outputs found

    PERP, a host tetraspanning membrane protein, is required for Salmonella-induced inflammation

    Get PDF
    Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast-two-hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP-22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface

    Cystatin C: A Candidate Biomarker for Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurologic disease characterized by progressive motor neuron degeneration. Clinical disease management is hindered by both a lengthy diagnostic process and the absence of effective treatments. Reliable panels of diagnostic, surrogate, and prognostic biomarkers are needed to accelerate disease diagnosis and expedite drug development. The cysteine protease inhibitor cystatin C has recently gained interest as a candidate diagnostic biomarker for ALS, but further studies are required to fully characterize its biomarker utility. We used quantitative enzyme-linked immunosorbent assay (ELISA) to assess initial and longitudinal cerebrospinal fluid (CSF) and plasma cystatin C levels in 104 ALS patients and controls. Cystatin C levels in ALS patients were significantly elevated in plasma and reduced in CSF compared to healthy controls, but did not differ significantly from neurologic disease controls. In addition, the direction of longitudinal change in CSF cystatin C levels correlated to the rate of ALS disease progression, and initial CSF cystatin C levels were predictive of patient survival, suggesting that cystatin C may function as a surrogate marker of disease progression and survival. These data verify prior results for reduced cystatin C levels in the CSF of ALS patients, identify increased cystatin C levels in the plasma of ALS patients, and reveal correlations between CSF cystatin C levels to both ALS disease progression and patient survival

    A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer’s disease

    Get PDF
    Age-related macular degeneration (AMD) and Alzheimer’s disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case–control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R2 = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele

    CD4-Independent Human Immunodeficiency Virus Infection Involves Participation of Endocytosis and Cathepsin B

    Get PDF
    During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1
    corecore