16 research outputs found

    Energetic Ion Moments and Polytropic Index in Saturn’s Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on Îș‐Distribution Functions

    Full text link
    Moments of the charged particle distribution function provide a compact way of studying the transport, acceleration, and interactions of plasma and energetic particles in the magnetosphere. We employ Îș‐distributions to describe the energy spectra of H+ and O+, based on >20 keV measurements by the three detectors of Cassini’s Magnetospheric Imaging Instrument, covering the time period from DOY 183/2004 to 016/2016, 5 < L < 20. From the analytical spectra we calculate the equatorial distributions of energetic ion moments inside Saturn’s magnetosphere and then focus on the distributions of the characteristic energy (Ec=IE/In), temperature, and Îș‐index of these ions. A semiempirical model is utilized to simulate the equatorial ion moments in both local time and L‐shell, allowing the derivation of the polytropic index (Γ) for both H+ and O+. Primary results are as follows: (a) The ∌9 < L < 20 region corresponds to a local equatorial acceleration region, where subadiabatic transport of H+ (Γ∌1.25) and quasi‐isothermal behavior of O+ (Γ∌0.95) dominate the ion energetics; (b) energetic ions are heavily depleted in the inner magnetospheric regions, and their behavior appears to be quasi‐isothermal (Γ<1); (c) the (quasi‐) periodic energetic ion injections in the outer parts of Saturn’s magnetosphere (especially beyond 17–18 RS) produce durable signatures in the energetic ion moments; (d) the plasma sheet does not seem to have a ground thermodynamic state, but the extended neutral gas distribution at Saturn provides an effective cooling mechanism that does not allow the plasma sheet to behave adiabatically.Key PointsDerivation of energetic ion moments, Îș‐index, characteristic energy, temperature, and polytropic index in Saturn’s magnetospherePresentation of a semiempirical analytical model for the 20 keV energetic ion Pressure, density, and temperatureThe neutral gas at Saturn provides an effective cooling mechanism and does not allow the plasma sheet to behave adiabaticallyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/1/jgra54546.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/2/jgra54546_am.pd

    I enA imaging: seeing the invisible

    Get PDF
    n what follows, we describe the technique and history of energetic neutral atom (enA) imaging of space plasma and present recent results from international collaborations involving enA imaging experiments as well as results from the imAge mission at earth and the cassini mission at Jupiter and saturn. both imAge and cassini carry ApL-built enA cameras. The henA instrument onboard the imAge mission provides global images of the ring current around the earth and reveals the importance of the electrical coupling between the ring current and the ionosphere. The incA instrument onboard cassini returns enA images from the enormous magnetosphere around saturn, giving unprecedented insight into the dynamics of the hot plasma and its interaction with neutral gas. The review ends with a brief description of enA imaging of the heliospheric boundary and future projects using enA instrumentation

    Interchange Injections at Saturn: Statistical Survey of Energetic H+ Sudden Flux Intensifications

    Full text link
    We present a statistical study of interchange injections in Saturn’s inner and middle magnetosphere focusing on the dependence of occurrence rate and properties on radial distance, partial pressure, and local time distribution. Events are evaluated from over the entirety of the Cassini mission’s equatorial orbits between 2005 and 2016. We identified interchange events from CHarge Energy Mass Spectrometer (CHEMS) H+ data using a trained and tested automated algorithm, which has been compared with manual event identification for optimization. We provide estimates of interchange based on intensity, which we use to investigate current inconsistencies in local time occurrence rates. This represents the first automated detection method of interchange, estimation of injection event intensity, and comparison between interchange injection survey results. We find that the peak rates of interchange occur between 7 and 9 Saturn radii and that this range coincides with the most intense events as defined by H+ partial particle pressure. We determine that nightside occurrence dominates as compared to the dayside injection rate, supporting the hypothesis of an inversely dependent instability growth rate on local Pedersen ionospheric conductivity. Additionally, we observe a slight preference for intense events on the dawnside, supporting a triggering mechanism related to large‐scale injections from downtail reconnection. Our observed local time dependence paints a dynamic picture of interchange triggering due to both the large‐scale injection‐driven process and ionospheric conductivity.Plain Language SummaryStudying high‐energy particles around magnetized planets is essential to understanding processes behind mass transport in planetary systems. Saturn’s magnetic environment, or magnetosphere, is sourced from a large amount of low‐energy water particles from Enceladus, a moon of Saturn. Saturn’s magnetosphere also undergoes large rotational forces from Saturn’s short day and massive size. The rotational forces and dense internal mass source drive interchange injections, or the injection of high‐energy particles closer to the planet as low‐energy water particles from the inner magnetosphere are transported outward. There have been many strides toward understanding the occurrence rates of interchange injections, but it is still unknown how interchange events are triggered. We present a computational method to identify and rank interchange injections using high‐energy particle fluxes from the Cassini mission to Saturn. These events have never been identified computationally, and the resulting database is now publically available. We find that the peak rates of interchange occur between 7 and 9 Saturn radii and that this range coincides with the highest intensity events. We also find that interchange occurrence rates peak on the nightside of Saturn. Through this study, we identify the potential mechanisms behind interchange events and advance our understanding of mass transport around planets.Key PointsWe developed a novel classification and identification algorithm for interchange injection based on Cassini CHEMS 3–220 keV H+ energetic ionsRadial occurrence rates and maximum partial H+ pressure in interchange peaked between 7 and 9 Saturn radii for all intensity categoriesOccurrence rates peak on the nightside (1800–0600 LT) as compared to the dayside (0600–1800 LT)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145315/1/jgra54283.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145315/2/jgra54283_am.pd

    Comment on “An Active Plume Eruption on Europa During Galileo Flyby E26 as Indicated by Energetic Proton Depletions” by Huybrighs et al.

    Full text link
    The Galileo spacecraft passed close to Europa on 11 encounters, two of which (E12 and E26) came within 400 km of the surface. In E12 data, there are perturbations in field and plasma data consistent with effects of a nearby plume (Jia et al., 2018). Huybrighs et al. (2020, https://doi.org/10.1029/2020GL087806) report depletions of proton flux in one channel of the Galileo Energetic Particle Detector (EPD) as Galileo passed close to Europa on E26. They trace particle trajectories in the magnetic field provided by a magnetohydrodynamic simulation and conclude that the spacecraft probably also passed through or close to a vapor plume on E26. However, the absence of a related signature in the measured magnetic field led us to question this conclusion. Examination of the EPD data remote from Europa on the E26 flyby reveals that the putative plume signature in the EPD data is an artifact.Plain Language SummaryIn recent years, there have been reports that plumes, or extraterrestrial geysers, rise hundreds of kilometers above the surfaces of Saturn’s moon, Enceladus, and Jupiter’s moon, Europa. A very recent paper examines data from a close pass by Europa (E26 flyby) made by the Galileo spacecraft on January 3, 2000. The paper identifies a localized decrease in the count rate of energetic protons lasting about 20 s very near closest approach to Europa’s surface and attributes the decrease to an interaction with a plume rising above Europa’s surface. In this “comment” we demonstrate that a localized decrease of proton count rates is recorded at the same point in almost each measurement cycle (every 280 s) even very far from Europa on this pass due to an anomaly in the Energetic Particle Detector (EPD) channel in question. Therefore, the use by the authors of the EPD data to establish the presence of a plume during this pass is erroneous. Our conclusion is that during E26 the Galileo EPD data has to date not shown evidence of a plume.Key PointsThe energetic proton flux decrease previously interpreted as the signature of a plume on the Galileo E26 flyby is an artifactThere is yet no convincing evidence for a plume encounter on Galileo’s E26 pass by EuropaPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167134/1/grl62068_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167134/2/grl62068.pd

    Energetic Magnetospheric Particle Fluxes Onto Callisto's Atmosphere

    No full text
    Abstract This study investigates how Callisto's perturbed electromagnetic environment—generated by the moon's interaction with the low‐energy Jovian magnetospheric plasma—affects the dynamics of high‐energy ions and electrons. We constrain how these perturbed fields influence the energetic particle fluxes deposited onto the top of Callisto's atmosphere between energies of 4.5 keV ≀ E ≀ 11.8 MeV. We use a hybrid simulation to model the variability in Callisto's perturbed electromagnetic environment over a synodic period by considering three representative scenarios of the moon's plasma interaction, corresponding to various distances of the moon to the Jovian magnetospheric current sheet. The local field perturbations are maximized near the center of the sheet (forming, e.g., signatures of field‐line pileup, draping, and AlfvĂ©n wings) whereas far from the sheet, a mere superposition of the moon's induced dipole with the background field largely explains the perturbations. We then apply a test‐particle approach to investigate the dynamics of energetic electrons and ions (protons, oxygen, and sulfur) while exposed to these fields. Since electron gyroradii are smaller than Callisto, the field perturbations generate small‐scale non‐uniformities in their flux patterns onto the moon, while the ion flux patterns are more homogeneous. Energetic electrons dominate the number flux onto the atmosphere, whereas ions dominate the energy flux. Over a synodic period, the flux patterns onto Callisto's exobase closely resemble those when the moon is near the current sheet center, since the differential energetic particle fluxes in the ambient plasma decrease by an order of magnitude when the moon travels far outside of the sheet

    Mapping Saturn’s Night Side Plasma Sheet Using Cassini’s Proximal Orbits

    No full text
    Between April and the end of its mission on 15 September, Cassini executed a series of 22 very similar 6.5‐day‐period proximal orbits, covering the mid‐latitude region of the nightside magnetosphere. These passes provided us with the opportunity to examine the variability of the nightside plasma sheet within this time scale for the first time. We use Cassini particle and magnetic field data to quantify the magnetospheric dynamics along these orbits, as reflected in the variability of certain relevant plasma parameters, including the energetic ion pressure and partial (hot) plasma beta. We use the University College London/Achilleos‐Guio‐Arridge magnetodisk model to map these quantities to the conjugate magnetospheric equator, thus providing an equivalent equatorial radial profile for these parameters. By quantifying the variation in the plasma parameters, we further identify the different states of the nightside ring current (quiescent and disturbed) in order to confirm and add to the context previously established by analogous studies based on long‐term, near‐equatorial measurements

    Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR) as tracers of solar wind conditions near Saturn: event lists and applications

    Get PDF
    The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn’s magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn’s distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( >  50 days each) where GCRs show a clear solar periodicity (â€ŻâˆŒâ€Ż13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn’s electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn’s electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR measurements can be used to provide the phase of CIRs at Saturn. We further demonstrate the utility of our survey results by determining that: (a) Magnetospheric convection induced by solar wind disturbances associated with SEPs is a necessary driver for the formation of transient radiation belts that were observed throughout Saturn’s magnetosphere on several occasions during 2005 and on day 105 of 2012. (b) An enhanced solar wind perturbation period that is connected to an SEP of day 332/2013 was the definite source of a strong magnetospheric compression which led to open flux loading in the magnetotail. Finally, we propose how the event lists can define the basis for single case studies or statistical investigations on how Saturn and its moons (particularly Titan) respond to extreme solar wind conditions or on the transport of SEPs and GCRs in the heliosphere

    Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview

    Full text link
    Previous Juno mission event studies revealed powerful electron and ion acceleration, to 100s of kiloelectron volts and higher, at low altitudes over Jupiter's main aurora and polar cap (PC; poleward of the main aurora). Here we examine 30–1200 keV JEDI-instrument particle data from the first 16 Juno orbits to determine how common, persistent, repeatable, and ordered these processes are. For the PC regions, we find (1) upward electron angle beams, sometimes extending to megaelectron volt energies, are persistently present in essentially all portions of the polar cap but are generated by two distinct and spatially separable processes. (2) Particle evidence for megavolt downward electrostatic potentials are observable for 80 of the polar cap crossings and over substantial fractions of the PC area. For the main aurora, with the orbit favoring the duskside, we find that (1) three distinct zones are observed that are generally arranged from lower to higher latitudes but sometimes mixed. They are designated here as the diffuse aurora (DifA), Zone-I (ZI(D)) showing primarily downward electron acceleration, and Zone-II (ZII(B)) showing bidirectional acceleration with the upward intensities often greater than downward intensities. (2) ZI(D) and ZII(B) sometimes (but not always) contain, respectively, downward electron inverted Vs and downward proton inverted Vs, (potentials up to 400 kV) but, otherwise, have broadband distributions. (3) Surprisingly, both ZI(D) and ZII(B) can generate equally powerful auroral emissions. It is suggested but demonstrated for intense portions of only one auroral crossing, that ZI(D) and ZII(B) are associated, respectively, with upward and downward electric currents

    Implications of Juno energetic particle observations over Jupiter’s polar regions for understanding magnetosphere-ionosphere coupling at strongly magnetized planets

    Full text link
    Juno obtained low altitude space environment measurements over Jupiter’s poles on 27 August 2016 and then again on 11 December 2016. Particle distributions were observed over the poles within the downward loss cones sufficient to power nominally observed auroral emissions and with the characteristic energies anticipated from remote spectroscopic ultra-violet auroral imaging. However, the character of the particle distributions apparently causing the most intense auroral emissions were very different from those that cause the most intense aurora at Earth and from those anticipated from prevailing models of magnetosphere-ionosphere coupling at Jupiter. The observations are highly suggestive of a predominance of a magnetic field-aligned stochastic acceleration of energetic auroral electrons rather than the more coherent acceleration processes anticipated. The Juno observations have similarities to observations observed at higher altitudes at Saturn by the Cassini mission suggesting that there may be some commonality between the magnetosphere-ionosphere couplings at these two giant planets. Here we present the Juno energetic particle observations, discuss their similarities and differences with published observations from Earth and Saturn, and deliberate on the implications of these finding for general understanding of magnetosphere-ionosphere coupling processes
    corecore