12 research outputs found

    Genetic study of the hepcidin gene (HAMP) promoter and functional analysis of the c.-582A > G variant

    Get PDF
    Background Hepcidin acts as the main regulator of iron homeostasis through regulation of intestinal absorption and macrophage release. Hepcidin deficiency causes iron overload whereas its overproduction is associated with anaemia of chronic diseases. The aims of the study were: to identify genetic variants in the hepcidin gene (HAMP) promoter, to asses the associations between the variants found and iron status parameters, and to functionally study the role on HAMP expression of the most frequent variant. Results The sequencing of HAMP promoter from 103 healthy individuals revealed two genetic variants: The c.-153C > T with a frequency of 0.014 for allele T, which is known to reduce hepcidin expression and the c.-582A > G with a 0.218 frequency for allele G. In an additional group of 224 individuals, the c.-582A > G variant genotype showed no association with serum iron, transferrin or ferritin levels. The c.-582G HAMP promoter variant decreased the transcriptional activity by 20% compared to c.-582A variant in cells from the human hepatoma cell line HepG2 when cotransfected with luciferase reporter constructs and plasmid expressing upstream stimulatory factor 1 (USF1) and by 12-14% when cotransfected with plasmid expressing upstream stimulatory factor 2 (USF2). Conclusions The c.-582A > G HAMP promoter variant is not associated with serum iron, transferrin or ferritin levels in the healthy population. The in vitro effect of the c.-582A > G variant resulted in a small reduction of the gene transactivation by allele G compared to allele A. Therefore the effect of the variant on the hepcidin levels in vivo would be likely negligible. Finally, the c.-153C > T variant showed a frequency high enough to be considered when a genetic analysis is done in iron overload patientsThis work was supported by a grant from the Fondo de Investigaciones Sanitarias del Instituto de Salud Carlos III (PI052249 to LL) and Xunta de Galicia (PGIDIT06PXIC9101136PN)S

    Ferredoxin 1b (Fdx1b) Is the essential mitochondrial redox partner for cortisol biosynthesis in zebrafish

    Get PDF
    Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo

    Influence of 17-Hydroxyprogesterone, Progesterone and Sex Steroids on Mineralocorticoid Receptor Transactivation in Congenital Adrenal Hyperplasia

    Get PDF
    &lt;b&gt;&lt;i&gt;Background:&lt;/i&gt;&lt;/b&gt; Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency leads to accumulation of steroid precursors and adrenal androgens. These steroids may have a biological effect on the steroid receptor with clinical consequences on diagnostics and treatment in CAH patients. Therefore, we analysed the effect of accumulated steroids [17-hydroxyprogesterone (17OHP), progesterone, androstenedione and testosterone] on aldosterone-mediated transactivation of the human mineralocorticoid receptor (hMR). &lt;b&gt;&lt;i&gt;Methods:&lt;/i&gt;&lt;/b&gt; A transactivation assay using transiently transfected COS7 cells was employed. Cells were co-transfected with hMR-cDNA, MMTV-luciferase and renilla-luciferase expression vectors. Transfected cells were incubated with six different steroid concentrations in addition to aldosterone (10&lt;sup&gt;-10&lt;/sup&gt;&lt;smlcap&gt;M&lt;/smlcap&gt;). Luciferase and renilla activities were measured to quantify hMR transactivation. &lt;b&gt;&lt;i&gt;Results:&lt;/i&gt;&lt;/b&gt; Linear regression analysis showed statistically significant linear inhibition of transactivation of the hMR by 10&lt;sup&gt;-10&lt;/sup&gt;&lt;smlcap&gt;M&lt;/smlcap&gt; aldosterone in the presence of increasing 17OHP [F(1,5) = 11.34, p = 0.019] and progesterone [F(1,5) = 11.08, p = 0.021] concentrations. In contrast, neither androstenedione nor testosterone affected hMR transactivation by aldosterone at a concentration of 10&lt;sup&gt;-10&lt;/sup&gt;&lt;smlcap&gt;M&lt;/smlcap&gt;. &lt;b&gt;&lt;i&gt;Conclusion:&lt;/i&gt;&lt;/b&gt; Our study shows for the first time that neither androstenedione nor testosterone has a biological effect on aldosterone-mediated transactivation of the hMR. 17OHP and progesterone have an anti-mineralocorticoid effect in vitro that may clinically lead to an increased requirement of mineralocorticoids in poorly controlled CAH patients.</jats:p

    High Frequency of Copy Number Variations and Sequence Variants at CYP21A2 Locus: Implication for the Genetic Diagnosis of 21-Hydroxylase Deficiency

    Get PDF
    BACKGROUND: The systematic study of the human genome indicates that the inter-individual variability is greater than expected and it is not only related to sequence polymorphisms but also to gene copy number variants (CNVs). Congenital Adrenal Hyperplasia due to 21-hydroxylase deficiency (21OHD) is the most common autosomal recessive disorder with a carrier frequency of 1:25 to 1:10. The gene that encodes 21-hydroxylase enzyme, CYP21A2, is considered to be one of the most polymorphic human genes. Copy number variations, such as deletions, which are severe mutations common in 21OHD patients, or gene duplications, which have been reported as rare events, have also been described. The correct characterization of 21OHD alleles is important for disease carrier detection and genetic counselling METHODOLOGY AND FINDINGS: CYP21A2 genotyping by sequencing has been performed in a random sample of the Spanish population, where 144 individuals recruited from university students and employees of the hospital were studied. The frequency of CYP21A2 mutated alleles in our sample was 15.3% (77.3% were mild mutations, 9% were severe mutations and 13.6% were novel variants). Gene dosage assessment was also performed when CYP21A2 gene duplication was suspected. This analysis showed that 7% of individuals bore a chromosome with a duplicated CYP21A2 gene, where one of the copies was mutated. CONCLUSIONS: As far as we know, the present study has shown the highest frequency of 21OHD carriers reported by a genotyping analysis. In addition, a high frequency of alleles with CYP21A2 duplications, which could be misinterpreted as 21OHD alleles, was found. Moreover, a high frequency of novel genetic variations with an unknown effect on 21-hydroxylase activity was also found. The high frequency of gene duplications, as well as novel variations, should be considered since they have an important involvement in carrier testing and genetic counseling

    Genotype-Phenotype Correlation in 153 Adult Patients With Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency: Analysis of the United Kingdom Congenital Adrenal Hyperplasia Adult Study Executive (CaHASE) Cohort

    Get PDF
    CONTEXT: In congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, a strong genotype-phenotype correlation exists in childhood. However, similar data in adults are lacking. OBJECTIVE: The objective of the study was to test whether the severity of disease-causing CYP21A2 mutations influences the treatment and health status in adults with CAH. RESEARCH DESIGN AND METHODS: We analyzed the genotype in correlation with treatment and health status in 153 adults with CAH from the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive cohort. RESULTS: CYP21A2 mutations were distributed similarly to previously reported case series. In 7 patients a mutation was identified on only 1 allele. Novel mutations were detected on 1.7% of alleles (5 of 306). Rare mutations were found on 2.3% of alleles (7 of 306). For further analysis, patients were categorized into CYP21A2 mutation groups according to predicted residual enzyme function: null (n = 34), A (n = 42), B (n = 36), C (n = 34), and D (n = 7). Daily glucocorticoid dose was highest in group null and lowest in group C. Fludrocortisone was used more frequently in patients with more severe genotypes. Except for lower female height in group B, no statistically significant associations between genotype and clinical parameters were found. Androgens, blood pressure, lipids, blood glucose, and homeostasis model assessment of insulin resistance were not different between groups. Subjective health status was similarly impaired across groups. CONCLUSIONS: In adults with classic CAH and women with nonclassic CAH, there was a weak association between genotype and treatment, but health outcomes were not associated with genotype. The underrepresentation of males with nonclassic CAH may reflect that milder genotypes result in a milder condition that is neither diagnosed nor followed up in adulthood. Overall, our results suggest that the impaired health status of adults with CAH coming to medical attention is acquired rather than genetically determined and therefore could potentially be improved through modification of treatment

    Genetic study of the hepcidin gene (<it>HAMP</it>) promoter and functional analysis of the c.-582A > G variant

    No full text
    Abstract Background Hepcidin acts as the main regulator of iron homeostasis through regulation of intestinal absorption and macrophage release. Hepcidin deficiency causes iron overload whereas its overproduction is associated with anaemia of chronic diseases. The aims of the study were: to identify genetic variants in the hepcidin gene (HAMP) promoter, to asses the associations between the variants found and iron status parameters, and to functionally study the role on HAMP expression of the most frequent variant. Results The sequencing of HAMP promoter from 103 healthy individuals revealed two genetic variants: The c.-153C > T with a frequency of 0.014 for allele T, which is known to reduce hepcidin expression and the c.-582A > G with a 0.218 frequency for allele G. In an additional group of 224 individuals, the c.-582A > G variant genotype showed no association with serum iron, transferrin or ferritin levels. The c.-582G HAMP promoter variant decreased the transcriptional activity by 20% compared to c.-582A variant in cells from the human hepatoma cell line HepG2 when cotransfected with luciferase reporter constructs and plasmid expressing upstream stimulatory factor 1 (USF1) and by 12-14% when cotransfected with plasmid expressing upstream stimulatory factor 2 (USF2). Conclusions The c.-582A > G HAMP promoter variant is not associated with serum iron, transferrin or ferritin levels in the healthy population. The in vitro effect of the c.-582A > G variant resulted in a small reduction of the gene transactivation by allele G compared to allele A. Therefore the effect of the variant on the hepcidin levels in vivo would be likely negligible. Finally, the c.-153C > T variant showed a frequency high enough to be considered when a genetic analysis is done in iron overload patients.</p

    Redefining the initiation and maintenance of zebrafish interrenal steroidogenesis by characterizing the key enzyme Cyp11a2

    No full text
    AbstractZebrafish are emerging as a model to study steroid hormone action and associated disease. However, steroidogenesis in zebrafish is not well characterized. Mammalian P450 side-chain cleavage enzyme (CYP11A1) catalyzes the first step of steroidogenesis, the conversion of cholesterol to pregnenolone. Previous studies describe an essential role for zebrafish Cyp11a1 during early development. Cyp11a1 has been suggested to be the functional equivalent of mammalian CYP11A1 in the zebrafish interrenal gland (equivalent to the mammalian adrenal), gonad, and brain. However, reported cyp11a1 expression is inconsistent in zebrafish larvae, after active cortisol synthesis commences. Recently a duplicated cyp11a gene, cyp11a2, has been described, which shares an 85% identity with cyp11a1. We aimed to elucidate the specific role of the two cyp11a paralogs. cyp11a1 was expressed from 0 to 48 hours post-fertilization (hpf), whereas cyp11a2 expression started after the development of the interrenal primordium (32 hpf) and was the only paralog in larvae. cyp11a2 is expressed in adult steroidogenic tissues, such as the interrenal, gonads, and brain. In contrast, cyp11a1 was mainly restricted to the gonads. Antisense morpholino knockdown studies confirmed abnormal gastrulation in cyp11a1 morphants. cyp11a2 morphants showed impaired steroidogenesis and a phenotype indicative of metabolic abnormalities. The phenotype was rescued by pregnenolone replacement in cyp11a2 morphants. Thus, we conclude that cyp11a1 is required for early development, whereas cyp11a2 is essential for the initiation and maintenance of zebrafish interrenal steroidogenesis. Importantly, this study highlights the need for a comprehensive characterization of steroidogenesis in zebrafish prior to its implementation as a model organism in translational research of adrenal disease.</jats:p

    5 alpha-Reductase Type 2 Regulates Glucocorticoid Action and Metabolic Phenotype in Human Hepatocytes

    No full text
    Glucocorticoids and androgens have both been implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); androgen deficiency in males, androgen excess in females, and glucocorticoid excess in both sexes are associated with NAFLD. Glucocorticoid and androgen action are regulated at a prereceptor level by the enzyme 5 alpha-reductase type 2 (SRD5A2), which inactivates glucocorticoids to their dihydrometabolites and converts T to DHT. We have therefore explored the role of androgens and glucocorticoids and their metabolism by SRD5A2 upon lipid homeostasis in human hepatocytes. In both primary human hepatocytes and human hepatoma cell lines, glucocorticoids decreased de novo lipogenesis in a dose-dependent manner. Whereas androgen treatment (T and DHT) increased lipogenesis in cell lines and in primary cultures of human hepatocytes from female donors, it was without effect in primary hepatocyte cultures from men. SRD5A2 overexpression reduced the effects of cortisol to suppress lipogenesis and this effect was lost following transfection with an inactive mutant construct. Conversely, pharmacological inhibition using the 5 alpha-reductase inhibitors finasteride and dutasteride augmented cortisol action. We have demonstrated that manipulation of SRD5A2 activity can regulate lipogenesis in human hepatocytes in vitro. This may have significant clinical implications for those patients prescribed 5 alpha-reductase inhibitors, in particular augmenting the actions of glucocorticoids to modulate hepatic lipid flux
    corecore