225 research outputs found

    e-MERLIN observations of the puzzling TeV source HESS J1943+213

    Full text link
    HESS J1943+213 is a TeV source close to the Galactic plane proposed to be a BL Lac object. Our high resolution EVN observation failed to recover two thirds of the source flux density detected simultaneously by the WSRT. Our recent e-MERLIN observations in L and C bands show only a point source with flux density comparable to the EVN detection. Thus the structure responsible for the missing flux density has to be larger than 2". It may be related to the presumed extragalactic source (thus would have a kpc-scale size), or to the Galactic foreground material close to the line of sight to the source.Comment: 4 pages, 1 figure, appears in the proceedings of the 12th European VLBI Network Symposium and Users Meeting (7-10 October 2014, Cagliari, Italy), eds. A. Tarchi, M. Giroletti & L. Feretti. Proceedings of Science, PoS(EVN 2014)07

    Probing the Nature of Ultra-Steep Spectrum Radio Sources

    Get PDF
    Here we present, first results from e-VLBI observations at 18 cm on a small sample of ultra-steep spectrum sources (spectral index between 74 MHz and 325 MH

    VLBI search for the radio counterpart of HESS J1943+213

    Get PDF
    HESS J1943+213, a TeV point source close to the Galactic plane recently discovered by the H.E.S.S. collaboration, was proposed to be an extreme BL Lacertae object, though a pulsar wind nebula (PWN) nature could not be completely discarded. To investigate its nature, we performed high-resolution radio observations with the European Very Long Baseline Interferometry Network (EVN) and reanalyzed archival continuum and H {\sc i} data. The EVN observations revealed a compact radio counterpart of the TeV source. The low brightness temperature and the resolved nature of the radio source are indications against the beamed BL Lacertae hypothesis. The radio/X-ray source appears immersed in a \sim 1\arcmin elliptical feature suggesting a possible galactic origin (PWN nature) for the HESS source. We found that HESS\,J1943+213 is located in the interior of a \sim1\degr diameter H {\sc i} feature, and explored the possibility of they being physically related.Comment: Significantly revised and extended. Accepted for publication in ApJ (ApJ, 762, 63). (4 figures.

    Is an obscured AGN at the centre of the disk galaxy IC 2497 responsible for Hanny's Voorwerp?

    Get PDF
    We present the results of VLBI and MERLIN observations of the massive disk galaxy IC 2497. Optical observations of IC 2497 revealed the existence of a giant emission nebula "Hanny's Voorwerp" in the proximity of the galaxy. Earlier short-track 18 cm observations with e-VLBI at 18 cm, detected a compact radio component (C1) at the centre of IC 2497. The brightness temperature of C1 was measured to be greater than 4E5 K. Deeper, long-track e-VLBI observations presented here, re-confirm the existence of C1 but also reveal the existence of a second compact component (C2) located about 230 milliarcseconds to the North-East of C1. The brightness temperature of C2 is measured to be greater than 1.4E5 K, suggesting that both components may be related to AGN activity (e.g. a radio core and jet hotspot). Lower resolution 18cm MERLIN observations show both components. C1 is shown to be compact with a slight elongation along the direction of Hanny's Voorwerp, and C2 shows a lot of extended emission in an almost perpendicular direction to the direction of the Voorwerp. Our results continue to support the hypothesis that IC 2497 contains an Active Galactic Nucleus (AGN), and that a jet associated with this AGN clears a path that permits ionising radiation from the AGN to directly illuminate the emission nebula.Comment: Presented at The 8th International e-VLBI Workshop: the Science and Technology of Long Baseline Real-Time Interferometry, EXPReS09, June 22-26 2009 Madrid, Spain. 5 pages, 5 article

    Density-based one-dimensional model potentials for strong-field simulations in He\text{He}, H2+\text{H}_{2}^{+} and H2\text{H}_{2}

    Full text link
    We present results on the accurate one-dimensional (1D) modeling of simple atomic and molecular systems excited by strong laser fields. We use atomic model potentials that we derive from the corrections proposed earlier using the reduced ground state density of a three-dimensional (3D) single-active electron atom. The correction involves a change of the asymptotics of the 1D Coulomb model potentials while maintaining the correct ground state energy. We present three different applications of this method: we construct correct 1D models of the hydrogen molecular ion, the helium atom and the hydrogen molecule using improved parameters of existing soft-core Coulomb potential forms. We test these 1D models by comparing the corresponding numerical simulation results with their 3D counterparts in typical strong-field physics scenarios with near- and mid-infrared laser pulses, having peak intensities in the 10141015W/cm210^{14}-10^{15}\,\mathrm{W/cm}^2 range, and we find an impressively increased accuracy in the dynamics of the most important atomic quantities on the time scale of the excitation. We also present the high-order harmonic spectra of the He atom, computed using our 1D atomic model potentials. They show a very good match with the structure and phase obtained from the 3D simulations in an experimentally important range of excitation amplitudes

    Discovery of circularly polarised radio emission from SS 433

    Get PDF
    We report the discovery of circularly polarised radio emission from the radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The flux density spectrum of the circular polarization, clearly detected at four frequencies between 1 - 9 GHz, has a spectral index of (-0.9 +/- 0.1). Multiple components in the source and a lack of very high spatial resolution do not allow a unique determination of the origin of the circular polarization, nor of the spectrum of fractional polarization. However, we argue that the emission is likely to arise in the inner regions of the binary, possibly via propagation-induced conversion of linear to circular polarization, and the fractional circular polarization of these regions may be as high as 10%. Observations such as these have the potential to investigate the composition, whether pairs or baryonic, of the ejecta from X-ray binaries.Comment: Accepted for publication in ApJ Letter

    VLBI imaging of extremely high redshift quasars at 5 GHz

    Get PDF
    We present very long baseline interferometry (VLBI) images of ten very high redshift (z>3) quasars at 5 GHz. The sources 0004+139, 0830+101, 0906+041, 0938+119 and 1500+045 were observed in September 1992 using a global VLBI array, while 0046+063, 0243+181, 1338+381, 1428+423 and 1557+032 were observed in October 1996 with the European VLBI Network and Hartebeesthoek, South Africa. Most of the sources are resolved and show asymmetric structure. The sample includes 1428+423, the most distant radio loud quasar known to date (z=4.72). It is barely resolved with an angular resolution of about 2.0*1.4 mas.Comment: Astronomy and Astrophysics, in press, Latex2e, 10 pages, 3 figures (and lots of sub-figures

    A close-pair binary in a distant triple supermassive black-hole system

    Full text link
    Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass \sim109^9 M_\odot (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by \sim140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.Comment: 21 pages, 6 figures. Published online by Nature on 25 June 2014. Extremely minor differences with published version exis

    Late Emission from the Type Ib/c SN 2001em: Overtaking the Hydrogen Envelope

    Full text link
    The Type Ib/c supernova SN 2001em was observed to have strong radio, X-ray, and Halpha emission at an age of about 2.5 yr. Although the radio and X-ray emission have been attributed to an off-axis gamma-ray burst, we model the emission as the interaction of normal SN Ib/c ejecta with a dense, massive (3 Msun) circumstellar shell at a distance about 7 x 10^{16} cm. We investigate two models, in which the circumstellar shell has or has not been overtaken by the forward shock at the time of the X-ray observation. The circumstellar shell was presumably formed by vigorous mass loss with a rate (2-10) x 10^{-3} Msun/yr at 1000-2000 yr prior to the supernova explosion. The hydrogen envelope was completely lost, and subsequently was swept up and accelerated by the fast wind of the presupernova star up to a velocity of 30-50 km/s. Although interaction with the shell can explain most of the late emission properties of SN 2001em, we need to invoke clumping of the gas to explain the low absorption at X-ray and radio wavelengths.Comment: 26 pages, 4 figures, ApJ submitte

    SN 2007gr: a Normal Type Ic Supernova with a Mildly Relativistic Radio Jet?

    Get PDF
    A nearby type Ic supernova, SN 2007gr was observed with the EVN in two epochs 60 days apart (second observation also included the Green Bank Telescope). In both cases one of the EVN stations was the Westerbork Synthesis Radio Telescope (WSRT), which recorded the observational data not only in the VLBI mode, but also in its normal interferometric mode. Thus it provided an important reference observation. In the first epoch the fluxes measured by the VLBI network and the WSRT alone match well. However in the second epoch the peak brightness observed in the VLBI experiment is much lower than the total flux recorded by the WSRT. There could be multiple reasons for this discrepancy: a resolution effect, coherence losses in VLBI, or extended emission contaminating the WSRT measurement. With new WSRT observations we costrain the level of background emission and find that there is still a difference between the corrected total flux density and the VLBI peak brightness. If one assumes that this is dominated by resolution, this would correspond to an average apparent expansion speed of ~0.4c
    corecore