40 research outputs found

    Influenza vaccine effectiveness estimates in Europe in a season with three influenza type/subtypes circulating: the I-MOVE multicentre case–control study, influenza season 2012/13

    Get PDF
    In the fifth season of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE), we undertook a multicentre case–control study (MCCS) in seven European Union (EU) Member States to measure 2012/13 influenza vaccine effectiveness against medically attended influenza-like illness (ILI) laboratory confirmed as influenza. The season was characterised by substantial co-circulation of influenza B, A(H1N1)pdm09 and A(H3N2) viruses. Practitioners systematically selected ILI patients to swab ≤7 days of symptom onset. We compared influenza-positive by type/subtype to influenza-negative patients among those who met the EU ILI case definition. We conducted a complete case analysis using logistic regression with study as fixed effect and calculated adjusted vaccine effectiveness (AVE), controlling for potential confounders (age, sex, symptom onset week and presence of chronic conditions). We calculated AVE by type/subtype. Study sites sent 7,954 ILI/acute respiratory infection records for analysis. After applying exclusion criteria, we included 4,627 ILI patients in the analysis of VE against influenza B (1,937 cases), 3,516 for A(H1N1)pdm09 (1,068 cases) and 3,340 for influenza A(H3N2) (730 cases). AVE was 49.3% (95% confidence interval (CI): 32.4 to 62.0) against influenza B, 50.4% (95% CI: 28.4 to 65.6) against A(H1N1)pdm09 and 42.2% (95% CI: 14.9 to 60.7) against A(H3N2). Our results suggest an overall low to moderate AVE against influenza B, A(H1N1)pdm09 and A(H3N2), between 42 and 50%. In this season with many co-circulating viruses, the high sample size enabled stratified AVE by type/subtype. The low estimates indicate seasonal influenza vaccines should be improved to achieve acceptable protection levels

    Low and decreasing vaccine effectiveness against influenza A(H3) in 2011/12 among vaccination target groups in Europe: results from the I-MOVE multicentre case-control study

    Get PDF
    Within the Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) project we conducted a multicentre case–control study in eight European Union (EU) Member States to estimate the 2011/12 influenza vaccine effectiveness against medically attended influenza-like illness (ILI) laboratory-confirmed as influenza A(H3) among the vaccination target groups. Practitioners systematically selected ILI / acute respiratory infection patients to swab within seven days of symptom onset. We restricted the study population to those meeting the EU ILI case definition and compared influenza A(H3) positive to influenza laboratory-negative patients. We used logistic regression with study site as fixed effect and calculated adjusted influenza vaccine effectiveness (IVE), controlling for potential confounders (age group, sex, month of symptom onset, chronic diseases and related hospitalisations, number of practitioner visits in the previous year). Adjusted IVE was 25% (95% confidence intervals (CI): -6 to 47) among all ages (n=1,014), 63% (95% CI: 26 to 82) in adults aged between 15 and 59 years and 15% (95% CI: -33 to 46) among those aged 60 years and above. Adjusted IVE was 38% (95%CI: -8 to 65) in the early influenza season (up to week 6 of 2012) and -1% (95% CI: -60 to 37) in the late phase. The results suggested a low adjusted IVE in 2011/12. The lower IVE in the late season could be due to virus changes through the season or waning immunity. Virological surveillance should be enhanced to quantify change over time and understand its relation with duration of immunological protection. Seasonal influenza vaccines should be improved to achieve acceptable levels of protection.ECD

    I-MOVE multicentre case–control study 2010/11 to 2014/15 : is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination?

    Get PDF
    Influenza vaccines are currently the best method available to prevent seasonal influenza infection. In most European countries one dose (or two doses for children) of seasonal vaccine is given from September to December to the elderly and other target groups for vaccination. In Europe, influenza seasons can last until mid-May (1), and it is expected that vaccination conveys protection on the individual for the duration of the season. In 13/15 reviewed studies on the length of vaccine-induced protection among the elderly, using anti-haemagglutination antibody titres as a proxy for seroprotection levels, seroprotection rates lasted at least >4 months after vaccination (2). However in the 2011-12 influenza season various studies in Europe reported a decrease in influenza vaccine effectiveness (VE) against A(H3N2) over time within the season (3–5). In the United States, a decrease in VE against A(H3N2) with time since vaccination was suggested in the 2007-8 influenza season (6). The observed decrease of VE over time can be explained by viral change (notably antigenic drift) occurring in the season. Drift in B viruses may be slower than in A viruses (7), and A(H3N2) viruses undergo antigenic drift more frequently than A(H1N1)pdm09 viruses (8). The decrease of VE over time can also be explained by a waning of the immunity conferred by the vaccine independently from viral changes. If vaccine-induced protection wanes more rapidly during the season, then depending on the start and duration of the influenza season, the decline of VE may cause increases in overall incidence, hospitalisations and deaths. Changes to vaccination strategies (timing and boosters) may be needed. As anti-haemagglutination antibody titres are not well defined as a correlate of protection (9,10), vaccine efficacy (as measured in trials) or vaccine effectiveness observational studies may be one way to measure vaccine-induced protection. These studies require a large sample size to model VE by time since vaccination and currently, most of the seasonal observational studies lack the precision required to provide evidence for waning immunity. In this study we pooled data across five post-pandemic seasons (2010/11-2014/15) from the I-MOVE (Influenza - Monitoring Vaccine Effectiveness) multicentre case control studies (1,3,11,12), to obtain a greater sample size to study the effects of time since vaccination on influenza type/subtype-specific VE. We measure influenza type/subtype-specific VE by time since vaccination for the overall season, but also in the early influenza phase; under the hypothesis that virological changes are fewer in the early season, but waning of the vaccine effect should be present regardless of time within the influenza phase

    Comparative epidemiologic characteristics of pertussis in 10 Central and Eastern European countries, 2000-2013

    Get PDF
    Publisher Copyright: © 2016 Heininger et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.We undertook an epidemiological survey of the annual incidence of pertussis reported from 2000 to 2013 in ten Central and Eastern European countries to ascertain whether increased pertussis reports in some countries share common underlying drivers or whether there are specific features in each country. The annual incidence of pertussis in the participating countries was obtained from relevant government institutions and/or national surveillance systems. We reviewed the changes in the pertussis incidence rates in each country to explore differences and/or similarities between countries in relation to pertussis surveillance; case definitions for detection and confirmation of pertussis; incidence and number of cases of pertussis by year, overall and by age group; population by year, overall and by age group; pertussis immunization schedule and coverage, and switch from whole-cell pertussis vaccines (wP) to acellular pertussis vaccines (aP). There was heterogeneity in the reported annual incidence rates and trends observed across countries. Reported pertussis incidence rates varied considerably, ranging from 0.01 to 96 per 100,000 population, with the highest rates generally reported in Estonia and the lowest in Hungary and Serbia. The greatest burden appears for the most part in infants (<1 year) in Bulgaria, Hungary, Latvia, Romania, and Serbia, but not in the other participating countries where the burden may have shifted to older children, though surveillance of adults may be inappropriate. There was no consistent pattern associated with the switch from wP to aP vaccines on reported pertussis incidence rates. The heterogeneity in reported data may be related to a number of factors including surveillance system characteristics or capabilities, different case definitions, type of pertussis confirmation tests used, public awareness of the disease, as well as real differences in the magnitude of the disease, or a combination of these factors. Our study highlights the need to standardize pertussis detection and confirmation in surveillance programs across Europe, complemented with carefully-designed seroprevalence studies using the same protocols and methodologies.publishersversionPeer reviewe

    2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project

    Get PDF
    We conducted a multicentre test-negative caseâ\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged â\u89¥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases

    Characteristics and practices of National Immunisation Technical Advisory Groups in Europe and potential for collaboration, April 2014

    Get PDF
    In many countries, national vaccination recommendations are developed by independent expert committees, so-called national immunisation technical advisory groups (NITAG). Since the evaluation of vaccines is complex and resource-demanding, collaboration between NITAGs that evaluate the same vaccines could be beneficial. We conducted a cross-sectional survey among 30 European countries in February 2014, to explore basic characteristics and current practices of European NITAGs and identify potential modes and barriers for collaboration. Of 28 responding countries, 26 reported to have a NITAG or an equivalent expert group. Of these, 20 apply a systematic approach in the vaccine decision-making process, e.g. by considering criteria such as country-specific disease epidemiology, vaccine efficacy/effectiveness/safety, health economics, programme implementation/logistics or country-specific values/preferences. However, applied frameworks and extent of evidence review differ widely. The use of systematic reviews is required for 15 of 26 NITAGs, while results from transmission modelling and health economic evaluations are routinely considered by 18 and 20 of 26 NITAGs, respectively. Twenty-five countries saw potential for NITAG-collaboration, but most often named structural concerns, e.g. different NITAG structures or countries’ healthcare systems. Our survey gathered information that can serve as an inventory on European NITAGs, allowing further exploration of options and structures for NITAG collaboration

    Vaccine effectiveness in preventing laboratory-confirmed influenza in primary care patients in a season of co-circulation of influenza A(H1N1)pdm09, B and drifted A(H3N2), I-MOVE Multicentre Case–Control Study, Europe 2014/15

    Get PDF
    Influenza A(H3N2), A(H1N1)pdm09 and B viruses co-circulated in Europe in 2014/15. We undertook a multicentre case–control study in eight European countries to measure 2014/15 influenza vaccine effectiveness (VE) against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. General practitioners swabbed all or a systematic sample of ILI patients. We compared the odds of vaccination of ILI influenza positive patients to negative patients. We calculated adjusted VE by influenza type/subtype, and age group. Among 6,579 ILI patients included, 1,828 were A(H3N2), 539 A(H1N1)pdm09 and 1,038 B. VE against A(H3N2) was 14.4% (95% confidence interval (CI): -6.3 to 31.0) overall, 20.7% (95%CI: -22.3 to 48.5), 10.9% (95%CI -30.8 to 39.3) and 15.8% (95% CI: -20.2 to 41.0) among those aged 0–14, 15–59 and ≥60  years, respectively. VE against A(H1N1)pdm09 was 54.2% (95%CI: 31.2 to 69.6) overall, 73.1% (95%CI: 39.6 to 88.1), 59.7% (95%CI: 10.9 to 81.8), and 22.4% (95%CI: -44.4 to 58.4) among those aged 0–14, 15–59 and ≥60 years respectively. VE against B was 48.0% (95%CI: 28.9 to 61.9) overall, 62.1% (95%CI: 14.9 to 83.1), 41.4% (95%CI: 6.2 to 63.4) and 50.4% (95%CI: 14.6 to 71.2) among those aged 0–14, 15–59 and ≥60 years respectively. VE against A(H1N1)pdm09 and B was moderate. The low VE against A(H3N2) is consistent with the reported mismatch between circulating and vaccine strains

    Repeated seasonal influenza vaccination among elderly in Europe: Effects on laboratory confirmed hospitalised influenza

    No full text
    In Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged >= 65 years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection <= 7 days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: -35 to 64), 8% (95%CI: -94 to 56) and 33% (95%CI: -43 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was -1% (95%CI: -80 to 43), 37% (95%CI: 7-57) and 43% (95%CI: 1-68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients' recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed. (C) 2017 The Author(s). Published by Elsevier Ltd
    corecore