7 research outputs found

    Transport study of intense-laser-produced fast electrons in solid targets with a preplasma created by a long pulse laser

    Full text link
    Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 17(6), 060704, 2010 and may be found at http://dx.doi.org/10.1063/1.344787

    Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    No full text
    International audienceLaser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility(CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics

    Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    No full text
    International audienceLaser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (View the MathML source) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration

    Floating microspheres: a review

    Get PDF
    Gastric emptying is a complex process, one that is highly variable and that makes in vivo performance of drug delivery systems uncertain. A controlled drug delivery system with prolonged residence time in the stomach can be of great practical importance for drugs with an absorption window in the upper small intestine. The main limitations are attributed to the inter- and intra-subject variability of gastro-intestinal (GI) transit time and to the non-uniformity of drug absorption throughout the alimentary canal. Floating or hydrodynamically controlled drug delivery systems are useful in such applications. Various gastroretentive dosage forms are available, including tablets, capsules, pills, laminated films, floating microspheres, granules and powders. Floating microspheres have been gaining attention due to the uniform distribution of these multiple-unit dosage forms in the stomach, which results in more reproducible drug absorption and reduced risk of local irritation. Such systems have more advantages over the single-unit dosage forms. The present review briefly addresses the physiology of the gastric emptying process with respect to floating drug delivery systems. The purpose of this review is to bring together the recent literature with respect to the method of preparation, and various parameters affecting the performance and characterization of floating microspheres.<br>O esvaziamento gástrico é um processo complexo, com elevada variabilidade e responsável pela incerteza do desempenho dos medicamentos in vivo. Dessa forma, os sistemas de liberação modificada de fármacos, com tempo de residência prolongado no estômago, em especial, considerando aqueles fármacos com janela de absorção na porção superior do intestino delgado, apresentam fundamental importância. As principais limitações relativas à absorção do fármaco são, no geral, atribuídas à variabilidade inter e intra-paciente do tempo de trânsito gastro-intestinal (GI) e da não-uniformidade da absorção do fármaco na extensão do canal alimentar. Assim, justifica-se a utilização dos sistemas flutuantes ou hidrodinâmicos de liberação de fármacos. Vários medicamentos gastrorretentivos estão disponibilizados no mercado e incluem comprimidos, cápsulas, pílulas, filmes laminados, microesferas flutuantes, grânulos e pós. As microesferas flutuantes apresentam maior destaque em função da distribuição granulométrica uniforme dessas formulações de dose múltipla. Como resultado, a absorção do fármaco apresenta maior reprodutibilidade e os riscos associados à irritação local são reduzidos. Tais sistemas apresentam maior vantagem quando comparado às formulações de dose única. A presente revisão tem como objetivo apresentar as publicações recentes referentes aos métodos de preparação, os vários parâmetros que afetam o desempenho e a caracterização das microesferas flutuantes. Além disso, o presente trabalho aborda a fisiologia do processo de esvaziamento gástrico no que se refere aos sistemas flutuantes de liberação de fármacos
    corecore