2,413 research outputs found

    A multichannel passive microwave atmospheric temperature sounding system

    Get PDF
    The development of a small, lightweight, low-power, seven channel passive microwave radiometer system for use on the Defense Meteorological Satellite Program (DMSP) was described. The 50-60 GHz sensor system operates in the region of an intense atmospheric oxygen absorption band to provide atmospheric temperature profiles to 30 kilometer altitudes on a global basis

    Effects of a Simulation Educational Experience on Critical Care Staff\u27s Recognition of Stressors Affecting Performance and Use of Teamwork Skills

    Get PDF
    Human limitations are sources of medical error that result in injuries, deaths and cost reaching millions. Preventing human errors from reaching patients is an imperative goal of a healthcare system that desires to reduce costs and produce quality outcomes. There is a mounting body of evidence that safety culture measurement and intervention can impact the safety and quality of healthcare

    Monte Carlo Hamiltonian of lattice gauge theory

    Full text link
    We discuss how the concept of the Monte Carlo Hamiltonian can be applied to lattice gauge theories.Comment: "Non-Perturbative Quantum Field Theory: Lattice and Beyond", Guangzhou, China 200

    Extinction and dust/gas ratio in LMC molecular clouds

    Get PDF
    Aims. The goal of this paper is to measure the dust content and distribution in the Large Magellanic Cloud (LMC) by comparing extinction maps produced in the near-infrared wavelengths and the spatial distribution of the neutral and molecular gas, as traced by Hi and CO observations. Methods. In order to derive an extinction map of the LMC, we have developed a new method to measure the color excess of dark clouds, using the 2MASS all-sky survey. Classical methods to measure the color excess (including the NICE method) tend to underestimate the true color excess if the clouds are significantly contaminated by unreddened foreground stars, as is the case in the LMC. We propose a new method that uses the color of the X percentile reddest stars and which is robust against such contamination. Using this method, it is possible to infer the positions of dark clouds with respect to the star distribution by comparing the observed color excess as a function of the percentile used and that predicted by a model. Results. On the basis of the resulting extinction map, we perform a correlation analysis for a set of dark molecular clouds. Assuming similar infrared absorption properties for the dust in the neutral and molecular phases, we derive the absorption-to-column density ratio AV/NH and the CO-to-H2 conversion factor X_(CO). We show that AV/NH increases from the outskirts of the LMC towards the 30 Dor star-forming region. This can be explained either by a systematic increase of the dust abundance, or by the presence of an additional gas component not traced by Hi or CO, but strongly correlated to the Hi distribution. If dust abundance is allowed to vary, the derived X_(CO) factors for the selected regions are several times lower than those derived from a virial analysis of the CO data. This could indicate that molecular clouds in the LMC are not gravitationally bound, or that they are bounded by substantial external pressure. However, the X_(CO) values derived from absorption can be reconciled with the virial results assuming a constant value for the dust abundance and the existence of an additional, unseen gas component. These results are in agreement with those derived for the LMC from diffuse far-infrared emission

    Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud (SAGE-SMC). I. Overview

    Get PDF
    The Small Magellanic Cloud (SMC) provides a unique laboratory for the study of the lifecycle of dust given its low metallicity (~1/5 solar) and relative proximity (~60 kpc). This motivated the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud) Spitzer Legacy program with the specific goals of studying the amount and type of dust in the present interstellar medium, the sources of dust in the winds of evolved stars, and how much dust is consumed in star formation. This program mapped the full SMC (30 deg^2) including the body, wing, and tail in seven bands from 3.6 to 160 ÎĽm using IRAC and MIPS on the Spitzer Space Telescope. The data were reduced and mosaicked, and the point sources were measured using customized routines specific for large surveys. We have made the resulting mosaics and point-source catalogs available to the community. The infrared colors of the SMC are compared to those of other nearby galaxies and the 8 ÎĽm/24 ÎĽm ratio is somewhat lower than the average and the 70 ÎĽm/160 ÎĽm ratio is somewhat higher than the average. The global infrared spectral energy distribution (SED) shows that the SMC has approximately 1/3 the aromatic emission/polycyclic aromatic hydrocarbon abundance of most nearby galaxies. Infrared color-magnitude diagrams are given illustrating the distribution of different asymptotic giant branch stars and the locations of young stellar objects. Finally, the average SED of H II/star formation regions is compared to the equivalent Large Magellanic Cloud average H II/star formation region SED. These preliminary results will be expanded in detail in subsequent papers

    The molecular complex associated with the Galactic HII region Sh2-90: a possible site of triggered star formation

    Full text link
    We investigate the star formation activity in the molecular complex associated with the Galactic HII region Sh2-90, using radio-continuum maps obtained at 1280 MHz and 610 MHz, Herschel Hi-GAL observations at 70 -- 500 microns, and deep near-infrared observation at JHK bands, along with Spitzer observations. Sh2-90 presents a bubble morphology in the mid-IR (size ~ 0.9 pc x 1.6 pc). Radio observations suggest it is an evolved HII region with an electron density ~ 144 cm^-3, emission measure ~ 6.7 x 10^4 cm^-6 pc and a ionized mass ~ 55 Msun. From Hi-GAL observations it is found that the HII region is part of an elongated extended molecular cloud (size ~ 5.6 pc x 9.7 pc, H_2 column density >= 3 x 10^21 cm^-2 and dust temperature 18 -- 27 K) of total mass >= 1 x 10^4 Msun. We identify the ionizing cluster of Sh2-90, the main exciting star being an O8--O9 V star. Five cold dust clumps (mass ~ 8 -- 95 Msun), four mid-IR blobs around B stars, and a compact HII region are found at the edge of the bubble.The velocity information derived from CO (J=3-2) data cubes suggests that most of them are associated with the Sh2-90 region. 129 YSOs are identified (Class I, Class II, and near-IR excess sources). The majority of the YSOs are low mass (<= 3 Msun) sources and they are distributed mostly in the regions of high column density. Four candidate Class 0/I MYSOs have been found; they will possibly evolve to stars of mass >= 15 Msun. We suggest multi-generation star formation is present in the complex. From the evidences of interaction, the time scales involved and the evolutionary status of stellar/protostellar sources, we argue that the star formation at the immediate border/edges of Sh2-90 might have been triggered by the expanding HII region. However, several young sources in this complex are probably formed by some other processes.Comment: 22 pages, 22 figures, accepted for publication in Astronomy and Astrophysic

    Measure of the path integral in lattice gauge theory

    Full text link
    We show how to construct the measure of the path integral in lattice gauge theory. This measure contains a factor beyond the standard Haar measure. Such factor becomes relevant for the calculation of a single transition amplitude (in contrast to the calculation of ratios of amplitudes). Single amplitudes are required for computation of the partition function and the free energy. For U(1) lattice gauge theory, we present a numerical simulation of the transition amplitude comparing the path integral with the evolution in terms of the Hamiltonian, showing good agreement.Comment: 5 pages, 2 figure

    A prospective randomized trial of fk506 versus cyclosporine after human pulmonary transplantation

    Get PDF
    We have conducted a unique prospective randomized study to compare the effect of PK506 and cyclosporine (CsA) as the principal immunosuppressive agents after pulmonary transplantation. Between October 1991 and March 1993, 74 lung transplants (35 single lung transplants [SLT], 39 bilateral lung transplant [BLT]) were performed on 74 recipients who were randomly assigned to receive either FK or CsA. Thirty-eight recipients (19 SLT, 19 BLT) received FK and 36 recipients (16 SLT, 20 BLT) received CsA. Recipients receiving FK or CsA were similar in age, gender, preoperative New York Heart Association functional class, and underlying disease. Acute rejection (ACR) was assessed by clinical, radiographic, and histologic criteria. ACR was treated with methylprednisolone, 1 g i.v./day, for three days or rabbit antithymocyte globulin if steroid-resistant.During the first 30 days after transplant, one patient in the FK group died of cerebral edema, while two recipients treated with CsA died of bacterial pneumonia (1) and cardiac arrest (1) (P=NS). Although one-year survival was similar between the groups, the number of recipients free from ACR in the FK group was significantly higher as compared with the CsA group (P<0.05). Bacterial and viral pneumonias were the major causes of late graft failure in both groups. The mean number of episodes of ACR/ 100 patient days was significantly fewer in the FK group (1.2) as compared with the CsA group (2.0) (P<0.05). While only one recipient (1/36=3%) in the group treated with CsA remained free from ACR within 120 days of transplantation, 13% (5/38) of the group treated with FK remained free from ACR during this interval (P<0.05). The prevalence of bacterial infection in the CsA group was 1.5 episodes/100 patient days and 0.6 episodes/100 patient days in the FK group. The prevalence of cytomegaloviral and fungal infection was similar in both groups.Although the presence of bacterial, fungal, and viral infections was similar in the two groups, ACR occurred less frequently in the FK-treated group as compared with the CsA-treated group in the early postoperative period (<90 days). Early graft survival at 30 days was similar in the two groups, but intermediate graft survival at 6 months was better in the FK group as compared with the CsA group. © 1994 by Williams and Wilkins

    Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps

    Get PDF
    Dust properties are very likely affected by the environment in which dust grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate that the aggregation process is favored in dense environments. However, studying warm (30 K-40 K) dust emission at long wavelength (λ\lambda>>300 μ\mum) has been limited because it is difficult to combine far infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution for observations of warm dust grains. Using Herschel data from 70 to 500 μ\mum, which are part of the Herschel infrared Galactic (Hi-GAL) survey combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we compared emission in two types of environments: ultra-compact HII (UCHII) regions, and cold molecular clumps (denoted as cold clumps). With this comparison we tested dust emission models in the FIR-to-mm domain that reproduce emission in the diffuse medium, in these two environments (UCHII regions and cold clumps). We also investigated their ability to predict the dust emission in our Galaxy. We determined the emission spectra in twelve UCHII regions and twelve cold clumps, and derived the dust temperature (T) using the recent two-level system (TLS) model with three sets of parameters and the so-called T-β\beta (temperature-dust emissvity index) phenomenological models, with β\beta set to 1.5, 2 and 2.5. We tested the applicability of the TLS model in warm regions for the first time. This analysis indicates distinct trends in the dust emission between cold and warm environments that are visible through changes in the dust emissivity index. However, with the use of standard parameters, the TLS model is able to reproduce the spectral behavior observed in cold and warm regions, from the change of the dust temperature alone, whereas a T-β\beta model requires β\beta to be known.Comment: Accepted for publication in A&A. 19 pages, 8 figures, 7 table

    Toward a better understanding of the mid-infrared emission in the LMC

    Full text link
    In this paper we aim to constrain for the first time the dust emission in the mid-to-far infrared domain, in the LMC, with the use of the Spitzer IRS and MIPS SED data, combined with Herschel data. We also consider UV extinction predictions derived from modeling. We selected 10 regions observed as part of the SAGE-Spec program, to probe dust properties in various environments (diffuse, molecular and ionized regions). All data were smoothed to the 40arcsec angular resolution. The SEDs were modeled with DustEM models, using the standard Mathis RF, as well as three additional RFs, with stellar clusters ages ranging from 4 Myr to 600 Myr. Standard dust models used to reproduce the Galactic diffuse medium are clearly not able to reproduce the dust emission in the MIR wavelength domain. This analysis evidences the need of adjusting parameters describing the dust size distribution and shows a clear distinct behavior according to the type of environments. In addition, whereas the small grain emission always seems to be negligible at long wavelengths in our Galaxy, the contribution of this small dust component could be more important than expected, in the submm-mm range, in the LMC averaged SED. Properties of the small dust component of the LMC are clearly different from those of our Galaxy. Its abundance, significantly enhanced, could be the result of large grains shattering due to strong shocks or turbulence. In addition, this grain component in the LMC systematically shows smaller grain size in the ionized regions compared to the diffuse medium. Predictions of extinction curves show significantly distinct behaviors depending on the dust models but also from one region to another. Comparison of model predictions with the LMC mean extinction curve shows that no model gives satisfactory agreement using the Mathis radiation field while using a harder radiation field tends to improve the agreementComment: Accepted for publication in A&
    • …
    corecore