58 research outputs found

    A Functional Magnetic Resonance Imaging Assessment of Small Animals Phobia Using Virtual Reality as a Stimulus

    Full text link
    [EN] Background: To date, still images or videos of real animals have been used in functional magnetic resonance imaging protocols to evaluate the brain activations associated with small animals phobia. Objective: The objective of our study was to evaluate the brain activations associated with small animals phobia through the use of virtual environments. This context will have the added benefit of allowing the subject to move and interact with the environment, giving the subject the illusion of being there. Methods: We have analyzed the brain activation in a group of phobic people while they navigated in a virtual environment that included the small animals that were the object of their phobia. Results: We have found brain activation mainly in the left occipital inferior lobe (P<.05 corrected, cluster size=36), related to the enhanced visual attention to the phobic stimuli; and in the superior frontal gyrus (P<.005 uncorrected, cluster size=13), which is an area that has been previously related to the feeling of self-awareness. Conclusions: In our opinion, these results demonstrate that virtual stimulus can enhance brain activations consistent with previous studies with still images, but in an environment closer to the real situation the subject would face in their daily lives.This study was funded by Vicerrectorado de Investigación de la Universitat Politècnica de València, Spain, PAID-06-2011, RN 1984; by the Ministerio de Educación y Ciencia Spain, Project Game Teen (TIN2010-20187); and partially by projects Consolider-C (SEJ2006-14301/PSIC), “CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII”, the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educación, 2008-157), and the Consolider INGENIO program (CSD2007-00012). Generalitat Valenciana, under a VALi+d Grant, supported the work of MC.Clemente Bellido, M.; Rey Solaz, B.; Rodríguez Pujadas, A.; Breton Lopez, J.; Barros Loscertales, A.; Baños, RM.; Botella, C.... (2014). A Functional Magnetic Resonance Imaging Assessment of Small Animals Phobia Using Virtual Reality as a Stimulus. JMIR Serious Games. 2(1)(6):1-12. https://doi.org/10.2196/games.2836S1122(1)

    Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sessile bivalves of the genus <it>Mytilus </it>are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of <it>M. galloprovincialis</it>, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes.</p> <p>Results</p> <p>We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in <it>M. galloprovincialis</it>. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with <it>Vibrio splendidus </it>at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the <it>Vibrio</it>-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways.</p> <p>Conclusions</p> <p>The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on <it>Vibrio</it>-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the <it>Mytilus </it>species to an evolving microbial world.</p
    corecore