1,379 research outputs found
Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis
We discuss the front propagation in ferroelectric chiral smectics (SmC*)
subjected to electric and magnetic fields applied parallel to smectic layers.
The reversal of the electric field induces the motion of domain walls or fronts
that propagate into either an unstable or a metastable state. In both regimes,
the front velocity is calculated exactly. Depending on the field, the speed of
a front propagating into the unstable state is given either by the so-called
linear marginal stability velocity or by the nonlinear marginal stability
expression. The cross-over between these two regimes can be tuned by a magnetic
field. The influence of initial conditions on the velocity selection problem
can also be studied in such experiments. SmC therefore offers a unique
opportunity to study different aspects of front propagation in an experimental
system
Understanding parental concerns related to their childâs development and factors influencing their decisions to seek help from health care professionals: Results of a qualitative study.
Background: Early identification of children at risk of developmental delay is crucial to promote healthy development. Assessing parental concerns about development is often part of identification processes. However, we currently do not understand well how and why parents become concerned, and, how and why they access early identification and intervention services. The purpose of this study was to explore parental perceptions about their childâs development, and the factors influencing their reported professional help-seeking behaviours.
Methods: This exploratory study was part of a larger study describing child development in children aged 2-5 in a small Canadian city. We conducted semi-structured interviews with 16 parents whose children were at risk of developmental delay to examine their perceptions of their childâs development, their use of community services promoting development, and their recommendations to optimize those services.
Results: Four themes were identified: 1) Vision of child development influencing help-seeking behaviours: Natural or Supported?, 2) Internal and external sources contributing to parentsâ level of developmental concern, 3) Using internal resources and struggling to access external resources, and 4) Satisfaction with services accessed and recommendations to access more support. Parentsâ vision of child development along with sources of parental concern appeared to influence the level of concern, enhancing our understanding of how parents become concerned. The level of concern, and parentsâ knowledge and perceived access to resources seemed to influence their decision whether or not to consult health care professionals. Parents provided many suggestions to improve services to promote child development and support families.
Discussion: Results highlight the importance of supporting parents in recognizing if their child is at risk of delay, and increasing awareness of available resources. It appears particularly important to ensure health care professionals and community-based support services are accessible to provide parents with the support they need, especially when they have concerns
Front Stability in Mean Field Models of Diffusion Limited Growth
We present calculations of the stability of planar fronts in two mean field
models of diffusion limited growth. The steady state solution for the front can
exist for a continuous family of velocities, we show that the selected velocity
is given by marginal stability theory. We find that naive mean field theory has
no instability to transverse perturbations, while a threshold mean field theory
has such a Mullins-Sekerka instability. These results place on firm theoretical
ground the observed lack of the dendritic morphology in naive mean field theory
and its presence in threshold models. The existence of a Mullins-Sekerka
instability is related to the behavior of the mean field theories in the
zero-undercooling limit.Comment: 26 pp. revtex, 7 uuencoded ps figures. submitted to PR
The Speed of Fronts of the Reaction Diffusion Equation
We study the speed of propagation of fronts for the scalar reaction-diffusion
equation \, with . We give a new integral
variational principle for the speed of the fronts joining the state to
. No assumptions are made on the reaction term other than those
needed to guarantee the existence of the front. Therefore our results apply to
the classical case in , to the bistable case and to cases in
which has more than one internal zero in .Comment: 7 pages Revtex, 1 figure not include
Structural Stability and Renormalization Group for Propagating Fronts
A solution to a given equation is structurally stable if it suffers only an
infinitesimal change when the equation (not the solution) is perturbed
infinitesimally. We have found that structural stability can be used as a
velocity selection principle for propagating fronts. We give examples, using
numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure
Generalized empty-interval method applied to a class of one-dimensional stochastic models
In this work we study, on a finite and periodic lattice, a class of
one-dimensional (bimolecular and single-species) reaction-diffusion models
which cannot be mapped onto free-fermion models.
We extend the conventional empty-interval method, also called
{\it interparticle distribution function} (IPDF) method, by introducing a
string function, which is simply related to relevant physical quantities.
As an illustration, we specifically consider a model which cannot be solved
directly by the conventional IPDF method and which can be viewed as a
generalization of the {\it voter} model and/or as an {\it epidemic} model. We
also consider the {\it reversible} diffusion-coagulation model with input of
particles and determine other reaction-diffusion models which can be mapped
onto the latter via suitable {\it similarity transformations}.
Finally we study the problem of the propagation of a wave-front from an
inhomogeneous initial configuration and note that the mean-field scenario
predicted by Fisher's equation is not valid for the one-dimensional
(microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001
Renormalization Group Theory And Variational Calculations For Propagating Fronts
We study the propagation of uniformly translating fronts into a linearly
unstable state, both analytically and numerically. We introduce a perturbative
renormalization group (RG) approach to compute the change in the propagation
speed when the fronts are perturbed by structural modification of their
governing equations. This approach is successful when the fronts are
structurally stable, and allows us to select uniquely the (numerical)
experimentally observable propagation speed. For convenience and completeness,
the structural stability argument is also briefly described. We point out that
the solvability condition widely used in studying dynamics of nonequilibrium
systems is equivalent to the assumption of physical renormalizability. We also
implement a variational principle, due to Hadeler and Rothe, which provides a
very good upper bound and, in some cases, even exact results on the propagation
speeds, and which identifies the transition from ` linear'- to `
nonlinear-marginal-stability' as parameters in the governing equation are
varied.Comment: 34 pages, plain tex with uiucmac.tex. Also available by anonymous ftp
to gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/front_RG.tex (or .ps.Z
Functional limit theorems for random regular graphs
Consider d uniformly random permutation matrices on n labels. Consider the
sum of these matrices along with their transposes. The total can be interpreted
as the adjacency matrix of a random regular graph of degree 2d on n vertices.
We consider limit theorems for various combinatorial and analytical properties
of this graph (or the matrix) as n grows to infinity, either when d is kept
fixed or grows slowly with n. In a suitable weak convergence framework, we
prove that the (finite but growing in length) sequences of the number of short
cycles and of cyclically non-backtracking walks converge to distributional
limits. We estimate the total variation distance from the limit using Stein's
method. As an application of these results we derive limits of linear
functionals of the eigenvalues of the adjacency matrix. A key step in this
latter derivation is an extension of the Kahn-Szemer\'edi argument for
estimating the second largest eigenvalue for all values of d and n.Comment: Added Remark 27. 39 pages. To appear in Probability Theory and
Related Field
Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice
We show that parametric coupling techniques can be used to generate selective
entangling interactions for multi-qubit processors. By inducing coherent
population exchange between adjacent qubits under frequency modulation, we
implement a universal gateset for a linear array of four superconducting
qubits. An average process fidelity of is estimated for
three two-qubit gates via quantum process tomography. We establish the
suitability of these techniques for computation by preparing a four-qubit
maximally entangled state and comparing the estimated state fidelity against
the expected performance of the individual entangling gates. In addition, we
prepare an eight-qubit register in all possible bitstring permutations and
monitor the fidelity of a two-qubit gate across one pair of these qubits.
Across all such permutations, an average fidelity of
is observed. These results thus offer a path to a scalable architecture with
high selectivity and low crosstalk
A comparison of attachment representations to father and mother using the MCAST
The aim of the current study was to examine the factorial structure of the Manchester Child Attachment Story Task (MCAST), using a father doll to address the child's attachment representation to father. While the MCAST, a doll story completion task measuring attachment representations in early childhood, has been validated for use with a mother doll, its use for assessing attachment to father is relatively unexplored. Thus, an additional aim was to compare the factorial structure of the child's attachment representation to father and mother, respectively. We analyzed data from 118 first-grade children who underwent counterbalanced administration of the MCAST with a mother and father doll, respectively, within a period of three months. Exploratory factorial analysis revealed similar, three-factor solutions for attachment to father and mother, with a first factor capturing the child's (scripted) knowledge of secure base/safe haven and a second factor reflecting intrusive and conflict behavior. The third factor was different in the father and mother representations, capturing self-care and role-reversal in attachment to father and disorganization in attachment to mother. Findings support the potential usefulness of the MCAST for exploring the father-child relationship and highlight a need for further research on early attachment representations to father
- âŠ