1,967 research outputs found

    Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder

    Get PDF
    Mammalian microRNAs are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the miR-155–induced GM populations displayed pathological features characteristic of myeloid neoplasia. Of possible relevance to human disease, miR-155 was found to be overexpressed in the bone marrow of patients with certain subtypes of acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress

    Comparative transcriptomic analysis of human placentae at term and preterm delivery.

    Get PDF
    Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-valu

    New exact fronts for the nonlinear diffusion equation with quintic nonlinearities

    Full text link
    We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities ut=uxx+μu(1u)(1+αu+βu2+γu3)u_t = u_{xx} + \mu u (1 -u ) ( 1 +\alpha u + \beta u^2 +\gamma u^3). If the parameters α,β\alpha , \beta and γ\gamma obey a special relation, then the criterion for the existence of a strong heteroclinic connection can be expressed in terms of two of these parameters. If an additional restriction is imposed, explicit front solutions can be obtained. The approach used can be extended to polynomials whose highest degree is odd.Comment: Revtex, 5 page

    Muscle Activation Patterns of Lower Body Musculature Among Three Traditional Lower Body Exercises in Trained Women

    Get PDF
    Korak, JA, Paquette, MR, Fuller, DK, Caputo, JL, and Coons, JM. Muscle activation patterns of lower-body musculature among 3 traditional lower-body exercises in trained women. J Strength Cond Res 32(10): 2770-2775, 2018-The deadlift and back and front squats are common multijoint, lower-body resistance exercises that target similar musculature. To our knowledge, muscle activity measured using surface electromyography has never been analyzed among these 3 exercises. Furthermore, most literature examining this topic has included male participants creating a void in the literature for the female population. Knowledge of lower-body muscle activation among these 3 exercises can aid coaches, trainers, and therapists for training and rehabilitative purposes. Trained women (n = 13) completed 2 days of testing including a 1-repetition maximum (1RM) estimation, an actual 1RM, and 3 repetitions at 75% 1RM load for the deadlift and back and front squats. Muscle activity of the 3 repetitions of each muscle was averaged and normalized as a percentage to the 1RM lifts for the deadlift and front and back squats. Five separate repeated-measure analysis of variances were performed indicating muscle activity of the gluteus maximus (GM) differed among the 3 exercises (p = 0.01, (Equation is included in full-text article.)= 0.39). Specifically, post hoc analysis indicated greater muscle activity during the front squat (M = 94%, SD = 15%) compared with the deadlift (M = 72%, SD = 16%; p ≤ 0.05) in the GM. No significant differences were observed among the lifts in the vastus medialis, vastus lateralis, biceps femoris, and rectus femoris. Strength and conditioning specialist and trainers can use these findings by prescribing the front squat to recruit greater motor units of the GM

    Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis

    Get PDF
    We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into either an unstable or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the field, the speed of a front propagating into the unstable state is given either by the so-called linear marginal stability velocity or by the nonlinear marginal stability expression. The cross-over between these two regimes can be tuned by a magnetic field. The influence of initial conditions on the velocity selection problem can also be studied in such experiments. SmC^* therefore offers a unique opportunity to study different aspects of front propagation in an experimental system

    Renormalization Group Theory for Global Asymptotic Analysis

    Full text link
    We show with several examples that renormalization group (RG) theory can be used to understand singular and reductive perturbation methods in a unified fashion. Amplitude equations describing slow motion dynamics in nonequilibrium phenomena are RG equations. The renormalized perturbation approach may be simpler to use than other approaches, because it does not require the use of asymptotic matching, and yields practically superior approximations.Comment: 13 pages, plain tex + uiucmac.tex (available from babbage.sissa.it), one PostScript figure appended at end. Or (easier) get compressed postscript file by anon ftp from gijoe.mrl.uiuc.edu (128.174.119.153), file /pub/rg_sing_prl.ps.

    Velocity Selection for Propagating Fronts in Superconductors

    Full text link
    Using the time-dependent Ginzburg-Landau equations we study the propagation of planar fronts in superconductors, which would appear after a quench to zero applied magnetic field. Our numerical solutions show that the fronts propagate at a unique speed which is controlled by the amount of magnetic flux trapped in the front. For small flux the speed can be determined from the linear marginal stability hypothesis, while for large flux the speed may be calculated using matched asymptotic expansions. At a special point the order parameter and vector potential are dual, leading to an exact solution which is used as the starting point for a perturbative analysis.Comment: 4 pages, 2 figures; submitted to Phys. Rev. Letter

    The Speed of Fronts of the Reaction Diffusion Equation

    Full text link
    We study the speed of propagation of fronts for the scalar reaction-diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u)\, with f(0)=f(1)=0f(0) = f(1) = 0. We give a new integral variational principle for the speed of the fronts joining the state u=1u=1 to u=0u=0. No assumptions are made on the reaction term f(u)f(u) other than those needed to guarantee the existence of the front. Therefore our results apply to the classical case f>0f > 0 in (0,1)(0,1), to the bistable case and to cases in which ff has more than one internal zero in (0,1)(0,1).Comment: 7 pages Revtex, 1 figure not include

    The Renormalization Group and Singular Perturbations: Multiple-Scales, Boundary Layers and Reductive Perturbation Theory

    Full text link
    Perturbative renormalization group theory is developed as a unified tool for global asymptotic analysis. With numerous examples, we illustrate its application to ordinary differential equation problems involving multiple scales, boundary layers with technically difficult asymptotic matching, and WKB analysis. In contrast to conventional methods, the renormalization group approach requires neither {\it ad hoc\/} assumptions about the structure of perturbation series nor the use of asymptotic matching. Our renormalization group approach provides approximate solutions which are practically superior to those obtained conventionally, although the latter can be reproduced, if desired, by appropriate expansion of the renormalization group approximant. We show that the renormalization group equation may be interpreted as an amplitude equation, and from this point of view develop reductive perturbation theory for partial differential equations describing spatially-extended systems near bifurcation points, deriving both amplitude equations and the center manifold.Comment: 44 pages, 2 Postscript figures, macro \uiucmac.tex available at macro archives or at ftp://gijoe.mrl.uiuc.edu/pu
    corecore