36 research outputs found

    Opioid-Induced Immunomodulation: Consequences for the Experimental Coxsackievirus B3-Induced Myocarditis Model

    Get PDF
    Myocarditis is an inflammatory disorder of the heart predominantly caused by infectious agents. Since more than sixty years, the Coxsackievirus B3 (CVB3)-induced myocarditis mouse model is the experimental model used to investigate viral myocarditis. The pathogenesis of viral myocarditis is conceptually a multiphase process, initiated by the infection of cardiomyocytes, followed by activation of the immune system, and resulting in myocardial fibrosis and left ventricular dysfunction. In parallel to the direct infection of the heart, CVB3 replicates in lymphatic organs such as the pancreas. Due to infection of the pancreas, the model of experimental CVB3-induced myocarditis is estimated as a severe burden for the challenged animals. Application of analgesics in frame of the animal welfare act (European directive 2010/63/EU) is more and more becoming a matter of debate. For this purpose, we summarized published studies for 13 different opioids and discussed their potential impact on CVB3-induced myocarditis. In addition, with this summary we also want to provide guidance for researchers beyond the myocarditis field to estimate the impact of opioids on the immune system for their specific model. In the literature, both immunosuppressive as well as immune-activating effects of opioids have been described, but examinations in experimental CVB3-induced myocarditis have still not been reported so far. Based on the existing publications, administration of opioids in experimental CVB3-induced myocarditis might result in more severe disease progression, including higher mortality, or a less pronounced myocarditis model, failing to be used for the establishment of new treatment options. Taken together, the applicability of opioids in experimental CVB3-induced myocarditis and in inflammatory models in general needs to be carefully evaluated and further investigated

    Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners

    Get PDF
    Cells release extracellular vesicles (EVs) to communicate in a paracrine manner with other cells, and thereby influence processes, such as angiogenesis. The conditioned medium of human cardiac-derived adherent proliferating (CardAP) cells was recently shown to enhance angiogenesis. To elucidate whether their released EVs are involved, we isolated them by differential centrifugation from the conditioned medium derived either in the presence or absence of a pro-inflammatory cytokine cocktail. Murine recipient cells internalized CardAP-EVs as determined by an intracellular detection of human proteins, such as CD63, by a novel flow cytometry method for studying EV-cell interaction. Moreover, endothelial cells treated for 24 h with either unstimulated or cytokine stimulated CardAP-EVs exhibited a higher tube formation capability on Matrigel. Interestingly, unstimulated CardAP-EVs caused endothelial cells to release significantly more vascular endothelial growth factor and interleukin (IL)-6, while cytokine stimulated CardAP-EVs significantly enhanced the release of IL-6 and IL-8. By nCounter® miRNA expression assay (NanoString Technologies) we identified microRNA 302d-3p to be enhanced in unstimulated CardAP-EVs compared to their cytokine stimulated counterparts, which was verified by quantitative polymerase chain reaction. This study demonstrates that both CardAP-EVs are pro-angiogenic by inducing different factors from endothelial cells. This would allow to select potent targets for a safe and efficient therapeutic application

    Speckle-tracking echocardiography combined with imaging mass spectrometry assesses region-dependent alterations

    Get PDF
    Left ventricular (LV) contraction is characterized by shortening and thickening of longitudinal and circumferential fibres. To date, it is poorly understood how LV deformation is altered in the pathogenesis of streptozotocin (STZ)-induced type 1 diabetes mellitus-associated diabetic cardiomyopathy and how this is associated with changes in cardiac structural composition. To gain further insights in these LV alterations, eight-week-old C57BL6/j mice were intraperitoneally injected with 50 mg/kg body weight STZ during 5 consecutive days. Six, 9, and 12 weeks (w) post injections, echocardiographic analysis was performed using a Vevo 3100 device coupled to a 30-MHz linear-frequency transducer. Speckle-tracking echocardiography (STE) demonstrated impaired global longitudinal peak strain (GLS) in STZ versus control mice at all time points. 9w STZ animals displayed an impaired global circumferential peak strain (GCS) versus 6w and 12w STZ mice. They further exhibited decreased myocardial deformation behaviour of the anterior and posterior base versus controls, which was paralleled with an elevated collagen I/III protein ratio. Additionally, hypothesis-free proteome analysis by imaging mass spectrometry (IMS) identified regional- and time-dependent changes of proteins affecting sarcomere mechanics between STZ and control mice. In conclusion, STZ-induced diabetic cardiomyopathy changes global cardiac deformation associated with alterations in cardiac sarcomere proteins

    MALDI‐IMS as a Tool to Determine the Myocardial Response to Syndecan‐2‐Selected Mesenchymal Stromal Cell Application in an Experimental Model of Diabetic Cardiomyopathy

    Get PDF
    Purpose: Mesenchymal stromal cells (MSC) are an attractive tool for treatment of diabetic cardiomyopathy. Syndecan-2/CD362 has been identified as a functional marker for MSC isolation. Imaging mass spectrometry (IMS) allows for the characterization of therapeutic responses in the left ventricle. This study aims to investigate whether IMS can assess the therapeutic effect of CD362+-selected MSC on early onset experimental diabetic cardiomyopathy. Experimental Design: 1 × 106 wild type (WT), CD362−, or CD362+ MSC are intravenously injected into db/db mice. Four weeks later, mice are hemodynamically characterized and subsequently sacrificed for IMS combined with bottom-up mass spectrometry, and isoform and phosphorylation analyses of cardiac titin. Results: Overall alterations of the cardiac proteome signatures, especially titin, are observed in db/db compared to control mice. Interestingly, only CD362+ MSC can overcome the reduced titin intensity distribution and shifts the isoform ratio toward the more compliant N2BA form. In contrast, WT and CD362− MSCs improve all-titin phosphorylation and protein kinase G activity, which is reflected in an improvement in diastolic performance. Conclusions and Clinical Relevance: IMS enables the characterization of differences in titin intensity distribution following MSC application. However, further analysis of titin phosphorylation is needed to allow for the assessment of the therapeutic efficacy of MSC

    Impact of Syndecan-2-Selected Mesenchymal Stromal Cells on the Early Onset of Diabetic Cardiomyopathy in Diabetic db/db Mice

    Get PDF
    Background: Mesenchymal stromal cells (MSCs) are an attractive cell type for cell therapy given their immunomodulatory, anti-fibrotic, and endothelial-protective features. The heparin sulfate proteoglycan, syndecan-2/CD362, has been identified as a functional marker for MSC isolation, allowing one to obtain a homogeneous cell product that meets regulatory requirements for clinical use. We previously assessed the impact of wild-type (WT), CD362(-), and CD362(+) MSCs on local changes in protein distribution in left ventricular (LV) tissue and on LV function in an experimental model of early-onset diabetic cardiomyopathy. The present study aimed to further explore their impact on mechanisms underlying diastolic dysfunction in this model. Materials: For this purpose, 1 x 10(6) WT, CD362(-), or CD362(+) MSCs were intravenously (i.v.) injected into 20-week-old diabetic BKS.Cg-m+/+Lepr(db)/BomTac, i.e., db/db mice. Control animals (db+/db) were injected with the equivalent volume of phosphate-buffered saline (PBS) alone. After 4 weeks, mice were sacrificed for further analysis. Results: Treatment with all three MSC populations had no impact on blood glucose levels in db/db mice. WT, CD362(-), and CD362(+) MSC application restored LV nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) levels in db/db mice, which correlated with a reduction in cardiomyocyte stiffness. Furthermore, all stromal cells were able to increase arteriole density in db/db mice. The effect of CD362(+) MSCs on NO and cGMP levels, cardiomyocyte stiffness, and arteriole density was less pronounced than in mice treated with WT or CD362(-) MSCs. Analysis of collagen I and III protein expression revealed that fibrosis had not yet developed at this stage of experimental diabetic cardiomyopathy. All MSCs reduced the number of cardiac CD3(+) and CD68(+) cells in db/db mice, whereas only splenocytes from CD362(-)- and CD362(+)-db/db mice exhibited a lower pro-fibrotic potential compared to splenocytes from db/db mice. Conclusion: CD362(+) MSC application decreased cardiomyocyte stiffness, increased myocardial NO and cGMP levels, and increased arteriole density, although to a lesser extent than WT and CD362(-) MSCs in an experimental model of early-onset diabetic cardiomyopathy without cardiac fibrosis. These findings suggest that the degree in improvement of cardiomyocyte stiffness following CD362(+) MSC application was insufficient to improve diastolic function

    Spontaneous Degenerative Aortic Valve Disease in New Zealand Obese Mice

    Get PDF
    Background: Degenerative aortic valve (AoV) disease and resulting aortic stenosis are major clinical health problems. Murine models of valve disease are rare, resulting in a translational knowledge gap on underlying mechanisms, functional consequences, and potential therapies. Naive New Zealand obese (NZO) mice were recently found to have a dramatic decline of left ventricular (LV) function at early age. Therefore, we aimed to identify the underlying cause of reduced LV function in NZO mice. Methods and Results: Cardiac function and pulmonary hemodynamics of NZO and age-matched C57BL/6J mice were monitored by serial echocardiographic examinations. AoVs in NZO mice demonstrated extensive thickening, asymmetric aortic leaflet formation, and cartilaginous transformation of the valvular stroma. Doppler echocardiography of the aorta revealed increased peak velocity profiles, holodiastolic flow reversal, and dilatation of the ascending aorta, consistent with aortic stenosis and regurgitation. Compensated LV hypertrophy deteriorated to decompensated LV failure and remodeling, as indicated by increased LV mass, interstitial fibrosis, and inflammatory cell infiltration. Elevated LV pressures in NZO mice were associated with lung congestion and cor pulmonale, evident as right ventricular dilatation, decreased right ventricular function, and increased mean right ventricular systolic pressure, indicative for the development of pulmonary hypertension and ultimately right ventricular failure. Conclusions: NZO mice demonstrate as a novel murine model to spontaneously develop degenerative AoV disease, aortic stenosis, and the associated end organ damages of both ventricles and the lung. Closely mimicking the clinical scenario of degenerative AoV disease, the model may facilitate a better mechanistic understanding and testing of novel treatment strategies in degenerative AoV disease

    CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis

    Get PDF
    Studies on inflammatory disorders elucidated the pivotal role of the CX3CL1/CX3CR1 axis with respect to the pathophysiology and diseases progression. Coxsackievirus B3 (CVB3)-induced myocarditis is associated with severe cardiac inflammation, which may progress to heart failure. We therefore investigated the influence of CX3CR1 ablation in the model of acute myocarditis, which was induced by inoculation with 5x105 plaque forming units of CVB3 (Nancy strain) in either CX3CR1-/- or C57BL6/j (WT) mice. Seven days after infection, myocardial inflammation, remodeling, and titin expression and phosphorylation were examined by immunohistochemistry, real-time PCR and Pro-Q diamond stain. Cardiac function was assessed by tip catheter. Compared to WT CVB3 mice, CX3CR1-/- CVB3 mice exhibited enhanced left ventricular expression of inflammatory cytokines and chemokines, which was associated with an increase of immune cell infiltration/presence. This shift towards a pro- inflammatory immune response further resulted in increased cardiac fibrosis and cardiomyocyte apoptosis, which was reflected by an impaired cardiac function in CX3CR1-/- CVB3 compared to WT CVB3 mice. These findings demonstrate a cardioprotective role of CX3CR1 in CVB3-infected mice and indicate the relevance of the CX3CL1/CX3CR1 system in CVB3-induced myocarditis

    Cardiac (myo)fibroblasts modulate the migration of monocyte subsets

    Get PDF
    Abstract Cardiac fibroblasts play an important role in the regulation of the extracellular matrix and are newly recognized as inflammatory supporter cells. Interferon (IFN)-γ is known to counteract transforming growth factor (TGF)-ß1-induced myofibroblast differentiation. This study aims at investigating in vitro how IFN-γ affects TGF-ß1-induced monocyte attraction. Therefore, C4 fibroblasts and fibroblasts obtained by outgrowth culture from the left ventricle (LV) of male C57BL6/j mice were stimulated with TGF-β1, IFN-γ and TGF-β1 + IFN-γ. Confirming previous studies, IFN-γ decreased the TGF-ß1-induced myofibroblast differentiation, as obviated by lower collagen I, III, α-smooth muscle actin (α-SMA), lysyl oxidase (Lox)-1 and lysyl oxidase-like (LoxL)-2 levels in TGF-β1 + IFN-γ- versus TGF-ß1-stimulated cardiac fibroblasts. TGF-β1 + IFN-γ-stimulated C4 and cardiac fibroblasts displayed a higher CC-chemokine ligand (CCL) 2, CCL7 and chemokine C-X3-C motif ligand (Cx3CL1) release versus sole TGF-ß1-stimulated fibroblasts. Analysis of migrated monocyte subsets towards the different conditioned media further revealed that sole TGF-β1- and IFN-γ-conditioned media particularly attracted Ly6Clow and Ly6Chigh monocytes, respectively, as compared to control media. In line with theses findings, TGF-β1 + IFN-γ-conditioned media led to a lower Ly6Clow/Ly6Chigh monocyte migration ratio compared to sole TGF-ß1 treatment. These differences in monocyte migration reflect the complex interplay of pro-inflammatory cytokines and pro-fibrotic factors in cardiac remodelling and inflammation

    Myeloid-Derived Suppressor Cells Restrain Natural Killer Cell Activity in Acute Coxsackievirus B3-Induced Myocarditis

    No full text
    Murine models of coxsackievirus B3 (CVB3)-induced myocarditis well represent the different outcomes of this inflammatory heart disease. Previously, we found that CVB3-infected A.BY/SnJ mice, susceptible for severe acute and chronic myocarditis, have lower natural killer (NK) cell levels than C57BL/6 mice, with mild acute myocarditis. There is evidence that myeloid-derived suppressor cells (MDSC) may inhibit NK cells, influencing the course of myocarditis. To investigate the MDSC/NK interrelationship in acute myocarditis, we used CVB3-infected A.BY/SnJ mice. Compared to non-infected mice, we found increased cell numbers of MDSC in the spleen and heart of CVB3-infected A.BY/SnJ mice. In parallel, S100A8 and S100A9 were increased in the heart, spleen, and especially in splenic MDSC cells compared to non-infected mice. In vitro experiments provided evidence that MDSC disrupt cytotoxic NK cell function upon co-culturing with MDSC. MDSC-specific depletion by an anti-Ly6G antibody led to a significant reduction in the virus load and injury in hearts of infected animals. The decreased cardiac damage in MDSC-depleted mice was associated with fewer Mac3+ macrophages and CD3+ T lymphocytes and a reduced cardiac expression of S100A8, S100A9, IL-1β, IL-6, and TNF-α. In conclusion, impairment of functional NK cells by MDSC promotes the development of chronic CVB3 myocarditis in A.BY/SnJ mice
    corecore