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Simple Summary: Myocarditis is an inflammatory disorder of the heart mainly caused by viruses.
To investigate viral myocarditis, the Coxsackievirus B3 (CVB3)-induced myocarditis model is the
experimental model used since more than sixty years. In the pathogeneses of viral myocarditis,
the subtle balance between pro-and anti-inflammatory immune responses is of great importance
for disease manifestation. Parallel to the infection of the heart, experimental CVB3-induced
myocarditis results in an infection of the pancreas, causing a severe burden for the challenged
animals. In frame of animal welfare, application of analgesics is mandatory. So far, positive
as well as negative effects of opioids on the immune system have been described. However,
the impact of opioid application on the pathogenesis of experimental CVB3-induced myocarditis
has not been investigated yet. Since examinations on disease pathways and new treatment
options rely on established models to generate reproducible data, applicability of opioids in
experimental CVB3-induced myocarditis needs to be carefully evaluated. For this purpose,
we summarized published studies for 13 different opioids and discussed their potential impact
on the CVB3-induced myocarditis model.

Abstract: Myocarditis is an inflammatory disorder of the heart predominantly caused by infectious
agents. Since more than sixty years, the Coxsackievirus B3 (CVB3)-induced myocarditis mouse
model is the experimental model used to investigate viral myocarditis. The pathogenesis of viral
myocarditis is conceptually a multiphase process, initiated by the infection of cardiomyocytes,
followed by activation of the immune system, and resulting in myocardial fibrosis and left ventricular
dysfunction. In parallel to the direct infection of the heart, CVB3 replicates in lymphatic organs
such as the pancreas. Due to infection of the pancreas, the model of experimental CVB3-induced
myocarditis is estimated as a severe burden for the challenged animals. Application of analgesics
in frame of the animal welfare act (European directive 2010/63/EU) is more and more becoming a
matter of debate. For this purpose, we summarized published studies for 13 different opioids and
discussed their potential impact on CVB3-induced myocarditis. In addition, with this summary we
also want to provide guidance for researchers beyond the myocarditis field to estimate the impact of
opioids on the immune system for their specific model. In the literature, both immunosuppressive as
well as immune-activating effects of opioids have been described, but examinations in experimental
CVB3-induced myocarditis have still not been reported so far. Based on the existing publications,
administration of opioids in experimental CVB3-induced myocarditis might result in more severe
disease progression, including higher mortality, or a less pronounced myocarditis model, failing to be
used for the establishment of new treatment options. Taken together, the applicability of opioids in
experimental CVB3-induced myocarditis and in inflammatory models in general needs to be carefully
evaluated and further investigated.
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1. Introduction

1.1. The Experimental Model of Coxsackievirus B3-Induced Myocarditis

Myocarditis is an inflammatory heart disease, primarily caused by infectious agents leading to
heart failure [1]. The enterovirus, coxsackievirus B3 (CVB3), is considered to be the most studied human
pathogen of viral myocarditis [2]. About 60 years ago, a mouse model of experimental CVB3-induced
myocarditis was established by intraperitoneal (i.p.) infection of mice with CVB3 [3,4]. Given the
resemblance of the myocardial injury in those mice with that occurring in humans, this model has
become the standard model to study virus-induced myocarditis [5].

Following viral entry via the coxsackie-adenovirus receptor, apoptosis of cardiomyocytes and
other cardiac resident cells is initiated [6,7]. This leads to direct damage of myocardial tissue.
In addition, the innate immune response is induced to provoke a defense reaction against the virus
and to clean up cell debris, involving the release of inflammatory mediators such as cytokines (tumor
necrosis factor (TNF)-α, transforming growth factor (TGF)-β, anti-viral interferon (IFN)-β and IFN-γ,
and interleukins (IL-1β, IL-2, IL-6 . . . ) and chemokines (monocyte chemoattractant protein (MCP)-1,
MCP-3 . . . ) [8]. These mediators trigger a vicious circle characterized by further infiltration of immune
cells such as monocytes/macrophages, dendritic cells (DCs), natural killer cells (NK), and neutrophils
into the myocardium and release of additional pro- and anti-inflammatory cytokines/chemokines [9].
In addition, generation of reactive oxygen species (ROS) also occurs, which promotes the further death
of cardiac cells [10]. In parallel, inflammatory processes trigger the accumulation of collagen and
extracellular matrix in the heart, resulting in left ventricle (LV) stiffening and finally in a reduction
of cardiac function [11,12]. Besides the well-described direct infection of the heart in the context of
experimental CVB3-induced myocarditis, there is cumulative evidence reporting primarily infection of
lymphatic organs [13], including the pancreas [14,15]. Mediated by the ongoing pancreatitis, the virus
also migrates from the pancreas into the heart via the activated/infected immune cells [15,16]. The spleen
is also a target organ of CVB3 [15], and splenic B cells, CD4+ T cells and Mac-1 macrophages/monocytes,
target cells of CVB3. Taken together, experimental CVB3-induced myocarditis is a multi-factorial
process, where the subtle balance between pro- and anti-inflammatory responses determines disease
progression and therefore experimental manifestation [17,18].

1.2. Relevance of Opioid Administration in Coxsackievirus B3-Induced Myocarditis

Due to the induced pancreatitis and associated weight decrease [19], suggested to be the result of
malabsorption and no appetite, experimental CVB3-induced myocarditis is estimated to be a severe
burden for the challenged animals. Invoking the European Directive (Directive 2010/63/EU), use of
analgesics for severely stressed animals is mandatory. But, application of analgesics especially in
inflammatory disease models is still a matter of debate. Nonsteroidal anti-inflammatory drugs are
known to cause, in addition to their impact on the subtle balance between pro- and anti-inflammatory
responses, severe side effects like increased cardiovascular risk [20,21] or adverse gastrointestinal
events [22], which both are contradictory for their use in experimental CVB3-induced myocarditis.

Related to opioids, both immunosuppressive as well as immune-activating effects have been
described [23]. The immunosuppressive effects might cause the development of an increased sensitivity
towards pathogens [24,25] or worse disease outcome [26,27]. This is supported by excellent review
articles describing an increased number of opportunistic infections after chronic application of
opioids [28,29], implying that opioid administration in experimental CVB3-induced myocarditis
might lead to worsened disease outcomes accompanied by severe suffering of mice. Increased
expression of anti-inflammatory mediators, like IL-4 [30,31] and IL-10 [32,33], reduced clinical score [34],
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and less inflammation [35] have further been reported following opioid administration. Moreover,
the substance itself exerts therapeutic effects [36], which makes it impossible to adequately evaluate
new treatment options.

In brief, the impact of opioids on the immune response is not fully explored and there are no
data available for the use of opioids in CVB3-induced myocarditis mice. Therefore, this article aims to
summarize the existing knowledge about different opioids commonly used in experimental research
and to further discuss their potential effects in the context of experimental CVB3-induced myocarditis.

2. Results and Discussion

In the current article, the use and described immune-related effects of 13 different opioids in rodents
is summarized in view of their potential use in experimental CVB3-induced myocarditis. In detail,
13 different opioids (morphine, buprenorphine, codeine, fentanyl, hydromorphone, methadone,
nalorphine, naloxone, naltrexone, oxycodone, tapentadol, tramadol, and remifentanil), their dose,
route of administration, duration, rodent species, and their impact on the immune system are stated
in Table A1.

2.1. Classification of Opioids

Based on their chemical modification, substances are classified into natural opium alkaloids
(morphine, codeine), semisynthetic opiates (buprenorphine, hydromorphone, oxycodone), and synthetic
opiates (fentanyl, methadone, nalorphine, naloxone, naltrexone, tapentadol, tramadol, and remifentanil).
Due to the different structures, differences in receptor binding (Figure 1) and subsequent effects on
the immune system have been reported [23,37]. The exact mode of action is not the subject of this
perspective article and has been described in detail elsewhere [38,39].
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Figure 1. Classification of opioids and their binding affinity at the respective opioid receptor. Substances
were classified into natural, semi-synthetic, and synthetic opiates, followed by further subdivision
according to their binding to the µ-, κ-, or δ-opioid receptor.
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2.2. Impact of Opioids on the Immune System and the Heart of Healthy Animals

Besides the already known immunosuppressive effects of morphine, further insights into the
complex impact of different opioids on immunity could be generated by our literature research. Effects
of the administered substances ranged from immune suppression to immune activation, forcing a
closer glance on existing publications. It is still a matter of debate, especially in preclinical research,
how opioids influence disease progression in experimental models and the exact mode-of-action is still
rarely known. Therefore, it is still challenging for researchers to conduct their studies in accordance
to the guidelines of animal welfare, avoiding severe burdens for their animals on the one hand and
providing robust data with established animal models on the other hand.

One major concern of the analyzed studies is that the corresponding measurements have mostly
been performed in healthy animals and not in disease models. It is undisputed that results under
normal conditions are completely different compared to the respective disease model. Figure 2
summarizes the existing knowledge about the impact of different opioids on the immune system and
the immune status of the heart in healthy rodents.
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Figure 2. Impact of opioids on the immune system and the immune status of the heart in healthy
animals. Overview of the reported effects of opioid administration in healthy mice. Despite extensive
knowledge of the impact on peripheral mononuclear cells of the blood and spleen, nothing is known
about the impact of opioids on the immune status of the heart.

2.3. Impact of Opioids on the Immune System in Disease Models

Little information exists related to the effect of opioid administration in disease models (Figure 3).
In total, 16 studies have been conducted in disease models [24–27,32–36,40–46], including in models of
lung cancer, contact hypersensitivity, infection, autoimmune encephalomyelitis, and surgery. In nine
of those studies, rats were used [25–27,36,40,41,43,44,46], which does not allow a transfer of the results
into murine models without critical evaluation.
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Apart from that, the published studies often did not apply uniform dosages or application
routes, which hampers direct comparison of results and does not allow a prognosis for other models.
Furthermore, Sacerdote et al. only investigated splenocyte proliferation, NK activity and IL-2
production to determine the immunosuppressive potential of the used opioids [37,47–49]. Especially in
models of inflammatory disease, like CVB3-induced myocarditis, it is well established that the extent
of the immune response is not mediated by only one cell population or cytokine but rather by an
orchestra of innate and adaptive immunity components [10,11,50].

2.4. Impact of Opioids on the Heart

With respect to the heart, the impact of opioids on contractility, aging, ischemic pre-conditioning,
and cardiogenesis involving several receptors has been reviewed [51]. In ischemic pre-conditioning
rodent models, morphine exerted cardio-protective effects, as shown by reduced infarct size and
area at risk [46]. Unfortunately, numerous studies have only been performed ex vivo in isolated
hearts [52–55] or in vitro [56]. This complicates a direct extrapolation to the in vivo situation and
particularly to an inflammatory disease as CVB3-induced myocarditis in which the immune system
plays a predominant role.

The occurrence of opioid receptors in the heart and their cross-talk to the cardiac β-adrenergic
receptors might explain the cardiac vascular side effects caused by chronic opioid abuse [57–60].

2.5. Impact of Opioids on Coxsackievirus B3-Induced Myocarditis

As described in the introduction, the pathogenesis of CVB3-induced myocarditis, of which all the
established experimental models are conducted in mice [61,62], depends on the subtle balance between
the pro- and anti-inflammatory response after infection. Interestingly, all listed opioids show either
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immunosuppressive or immune-activating effects, probably having an impact on the pathogenesis and
severity of the CVB3 model itself. For example, treatment with fentanyl resulted in increased retention
of lung tumor and tumor metastasis [27] or sensitization of the treated animals towards pathogens [24].
In contrast, tramadol induced therapeutic, anti-inflammatory effects in two models of inflammation,
as indicated by lower number of edema and less inflammatory exudate [36].

With respect to cardiac function, none of the cited studies investigated the impact of opioids on
cardiomyocytes, or fibroblasts. Indicative for the extent of LV contractility impairment and myocardial
remodeling in viral myocarditis mice may be the generation of ROS, which leads to increased apoptosis
of cardiomyocytes followed by reduced LV function [10]. Furthermore, ROS production and subsequent
cardiomyocyte apoptosis leads to viral progeny release [63]. Oxycodone, morphine, buprenorphine,
fentanyl as well as methadone all increase the production of ROS [33,64], which therefore represents a
clear contraindication in experimental CVB3-induced myocarditis.

Additionally, previous own studies investigated the impact of various cell populations in
the context of CVB3-induced heart failure [11,65], including monocytes/macrophages, NK cells,
and DCs [50,66,67]. With respect to opioid administration, Filipczak-Bryniarska and colleagues
intensively reported modulation of monocytes/macrophages and NK cells, and corresponding release
of pro-inflammatory cytokines by LPS-stimulated macrophages [33,64,68]. Accordingly, an alteration
of our established CVB3 myocarditis model after acute or chronic opioid application can´t be excluded.

3. Conclusions

Taken together, current evidence based on our literature search indicates that opioids have a
modulating effect on the immune system. This implies that upon opioid administration the rodent
model as such might be altered and the effect of the evaluated treatment option, influenced. Furthermore,
knowledge about their impact on myocardial parameters is still insufficient.

Given the current state of the research, we assume that depending on the used substance, a more
severe disease progression, including higher mortality and an overshooting inflammatory response,
or a less pronounced myocarditis, which fails to provide robust data, are possible. Since animal studies
have to be conducted in accordance with the animal welfare act, researchers are faced with a moral
dilemma, revealing gaps in this field. Although there are publications on patients who reported
heart failure symptoms after chronic opioid use, local animal welfare authorities require published
evidence for the exclusion of analgesics in the experimental model of CVB3-induced myocarditis
due to the severe burden. Investigations of disease pathways and new treatment options rely on
established models to generate reproducible data, and even small changes on experimental protocols
might result in less comparability of the examined effects. On the other hand, it is well known that
the physiological and neuroendocrine effects of pain can impact research outcomes. This controversy
between animal welfare and good scientific practice reveals a major challenge for the future, especially
since animal-free alternative methods in viral myocarditis research are non-existent at the moment.
Therefore, the applicability of opioids in experimental CVB3-induced myocarditis, and in inflammatory
models in general, needs to be carefully evaluated and investigated further.

4. Significance Statement and Future Directions

Already some years ago, the discussion about the applicability of analgesics in CVB3-induced
myocarditis started. Due to novel regulations in frame of the European Directive 2010/63/EU, the use
of analgesics is required by the local animal welfare authorities and to receive the formal approval
for experiments causing severe suffering like CVB3-induced myocarditis is impossible without
application of analgesics. As described above, the experimental CVB3-induced myocarditis model
was established 60 years ago via intraperitoneal application of CVB3 [3,4]. Besides direct infection
of the heart, an infection of the pancreas also occurs, which causes the severity of the experimental
CVB3 model [14,15]. Mediated by the ongoing pancreatitis, the challenged mice display reduced
health status, and successful infection is associated with a strong decline in body weight [14]. A first
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attempt to reduce the severity of the CVB3 model was performed by Pinkert et al., who developed a
new mouse model by attenuating CVB3 virulence in the pancreas [14]. Despite better health status
and body weight, the novel H3N-375TS virus strain cannot be used for future translational research,
because mice displayed no cardiac dysfunction. However, this is essential, enabling proper evaluation
of the therapeutic impact of new treatment options. Therefore, other approaches, like application of
certain opioids to achieve refinement of the CVB3-induced myocarditis model need to be investigated,
especially since no target-specific strategies in viral myocarditis are established to date [1] and the
clinical success of anti-inflammatory and immunomodulatory therapies is still limited [69]. Therefore,
the established murine CVB3-induced myocarditis model needs to be improved to allow further valid
research in this field.
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Appendix A

Table A1. Summary of used opioids in experimental research. In total, 2 natural opium alkaloids
(morphine, codeine), 3 semisynthetic opiates (buprenorphine, hydromorphone, oxycodone), and
8 synthetic opiates (fentanyl, methadone, nalorphine, naloxone, naltrexone, tapentadol, tramadol,
and remifentanil) were included. The table comprises their dose, route and duration of administration,
rodent species, and opiate’s impact on the immune system under control or disease conditions.

Reference Dosage, Route of
Application, Duration Species Disease Model End Points/Measured Parameters

Morphine (prototype drug)

Bryant (1988) [70]

75 mg as a pellet;
subcutaneously (s.c.)

implanted
→ sacrifice 6, 24, 48, 72, 96, or

120 hours (h) later

mice /

- spleen and thymus weight ↓
- adrenal gland weight ↑

- number of splenocytes at 48 and 72 h
↓

- Concanavalin-A (Con-A)-induced
splenocyte proliferation at 48 and 72 h

↓

- lipopolysaccharide (LPS)-induced
splenocyte proliferation at 24, 48, and

72 h ↓

Bryant (1988) [71]

75 mg as a pellet; s.c.
implanted

→ sacrifice 6, 24, 48, 72, 96, or
120 h later

mice /

- spleen and thymus weight ↓
between 24–72h

- at 48 h: Con-A-induced splenocyte
proliferation ↓

- at 120 h: Con-A-induced splenocyte
proliferation ↑

Bryant (1991) [72]

75 mg as a pellet; s.c.
implanted in

adrenalectomized (ADX) mice
→ sacrifice 48h later

mice /

sham ADX mice:
- adrenal gland weight ↑

- spleen and thymus weight ↓
- LPS and Con-A-induced splenocyte

proliferation ↓
ADX mice:

- decrease spleen and thymus weight
less pronounced

- no reduction in splenocyte
proliferation
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Table A1. Cont.

Reference Dosage, Route of Application,
Duration Species Disease Model End Points/Measured Parameters

van der Laan (1995) [73] 0.25–1.00 g/kg for 6 weeks
(admixed into food) rats /

- liver, spleen, and pituitary gland weight ↓
- weight of lymph nodes ↑

- decrease in vacuolization of the hepatocytes
↓ (= glycogen storage ↓)

- extramedullary hematopoiesis in the spleen
↓

- cell density in the medullary cords of the
mesenterial lymph nodes ↑

Sacerdote (1997) [37] 2.5–20 mg/kg; once s.c. mice /
- splenocyte proliferation ↓

- NK activity ↓
- IL-2 production by splenocytes ↓

Schultz (1997) [46]

100 µg/kg; 3 times via intravenous
infusion

→ 5 minutes (min) infusion time
→ sacrifice after 2 h reperfusion

period

rats

ligation of the left
coronary artery
(BUT: no sham

control)

- infarct size/area at risk ↓
= therapeutic effect; but no sham animals

included

Gavériaux-Ruff (1998) [74]

generation of µ-receptor
knock-out (MOR) mice

→ daily application of 20–100
mg/kg via intraperitoneal

injection (i.p.) for 6 days (d)

mice /

WT animals:
- atrophy of spleen and thymus

- absolute cell number in the spleen ↓
- splenic NK activity ↓

- absolute cell number in the thymus ↓
- percentage of CD4+ und CD8+ thymocytes ↑

- percentage of CD4+CD8+ thymocytes ↓
MOR animals:

- no modulatory effects observed

De Waal (1998) [25] 200 or 500 mg/kg food;
administration up to 42d rats

infection with
Listeria

monocytogenes or
Trichinella spiralis

- serum corticosterone levels not affected
- IgM and IgG antibody titers unchanged

- clearance of Listeria monocytogenes bacteria in
the spleen not affected- host resistance to

Trichinella spiralis ↓

Filipczak-Bryniarska
(2012) [33]

healthy animals:
20 mg/kg; i.p.; two times within 24

h for 5d
disease model and transfer experiments:
20 mg/kg; i.p.; two times within 24

h for up to 7d
→ application in the induction

and effector phase

mice

healthy mice
+

contact
hypersensitivity

model
(CHS;

pre-treatment
with opioids)

healthy mice:
- humoral immune response (=number of

plaque forming cells) ↓
- serum levels of IgM and IgG antibodies ↓

- ROS production by macrophages ↑
- percentage of CD4+CD8+ cells in the blood ↓

- percentage of monocytes in the blood ↓
- expression of cell surface markers for

antigen presentation on peritoneal
macrophages ↓

- production of TNF-α and IL-6 by
macrophages ↑

application in the induction phase of CHS:
- early immune response after 2 h ↓
- late immune response after 24 h ↓

application in the effector phase of CHS:
- early immune response after 2 h ↑
- late immune response after 24 h ↑

Buprenorphine

Gomez-Flores (2000) [75]

0.66 nmol;
single application in the

mesencephalon periaqueductal
gray

rats /

- NK activity not changed
- splenic TNF-α and NO expression not

changed
- phagocytosis not changed

- plasma levels of adrenocorticotropic
hormone and corticosterone ↓

BUT:
- severe burden of the animals due to the

operation
- application route is not possible in

experimental CVB3-induced myocarditis

D´Elia (2003) [76]
0.2 mg/kg*d−1 via an osmotic

pump
→ application for up to 10d

mice /

- corticosterone serum level at day 1 ↑
- corticosterone serum level at day 5 ↓

- ratio of CD4+ thymocytes at day 5 and 10 ↓
- ratio of CD8+ thymocytes at day 5 and 10 ↑

- splenocyte proliferation at day 5 ↑
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Table A1. Cont.

Reference Dosage, Route of
Application, Duration Species Disease Model End Points/Measured Parameters

Rätsep (2013) [77]
0.05 mg/kg, s.c., twice a day
→ observation until d7 after

the surgery
mice

no real disease
model; test of
analgesics for

telemeter
implantation

- recovery of body weight at d6
post-surgery

- food intake the first 3 days ↓
- daytime mean arterial pressure ↓

- night time mean arterial pressure ↓
- heart rate ↓

Franchi (2007) [40]

0.1 mg/kg, s.c., twice (at the
end of the surgery and 5h

later)
→ sacrifice 60 min after last

the application

rats laparotomy

- corticosterone serum level ↓
- NK activity ↑

- number of lung metastasis ↓
(=therapeutic effect)

Blennerhasset (2017)
[35]

healthy animals:
0.05 mg/kg s.c. twice daily for

5d
disease model:

0.05 mg/kg s.c. twice daily for
8d

mice

healthy mice
+

dextran sodium
sulfate

(DSS)-induced
colitis

healthy mice:
- no effect on food and water intake
application in DSS-induced colitis:

- microscopic inflammation ↓
- MPO activity ↓

- inhibition of smooth muscle cellular
hyperplasia

- number of circulating smooth muscle
cells in the colon ↓

- axon area of the neuromuscular layer
(colon) ↓

= anti-inflammatory effect

Filipczak-Bryniarska
(2018) [64]

healthy animals:
2 mg/kg

i.p.; one dose within 24 h for 7d
disease model and transfer experiments:
2 mg/kg i.p.; one dose within

24 h for up to 11d
→ application in the induction

and effector phase

mice

healthy mice
+

contact
hypersensitivity

model (CHS;
pre-treatment
with opioids)

healthy mice:
- humoral immune response (=number of

plaque forming cells) ↑
- ROS and NO generation by

macrophages ↑
- intensity of fluorescence of cell surface

markers for antigen presentation on
macrophages ↓

- production of IL-12 by macrophages ↓
application in the induction phase of CHS:

- early immune response after 2 h not
changed

- late immune response after 24 h ↓
application in the effector phase of CHS:

- early immune response after 2 h ↓
- late immune response after 24 h not

changed-late immune response after 48 h
↓

Filipczak-Bryniarska
(2018) [68]

2 mg/kg i.p.; one dose within
24 h for 7d mice /

- phagocytosis of sheep red blood cells by
macrophages ↑

- phagocytosis of zymosan-green by
macrophages ↑

Jirkof (2019) [42] 0.009 mg/mL via drinking
water for 3d mice osteotomy model

- no effect on food and water intake
- model-specific pain behavior ↓

- no impact on bone fracture healing (bone
volume fraction) and vessel formation

Codeine

Sacerdote (1997) [37] 2.5–100 mg/kg; once s.c. mice /
- splenocyte proliferation not changed

- NK activity ↓
- IL-2 production by splenocytes ↓
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Table A1. Cont.

Reference Dosage, Route of Application,
Duration Species Disease Model End Points/Measured Parameters

Fentanyl

Martucci
(2004) [78]

acute study:
0.25 mg/kg; once s.c.
→ sacrifice 60 min later

chronic study:
7.5 µg/h (180 µg/day) via an

osmotic pump
→ application up to 7d

mice /

acute study:
- lymphocyte proliferation ↓

- NK activity not changed
- IL-2 und IFN-γ production by splenocytes not

changed
chronic study:

- lymphocyte proliferation 24 h and 3 days after
the last application ↓

- NK activity 24 h and 3 days after the last
application ↓

- IL-2 production by splenocytes at day 3 after
the last application ↓

- IFN-γ production by splenocytes at day 3 after
the last application ↓

Shavit (2004) [27]
0.1–0.3 mg/kg; once s.c.

→ 6 h, 2 h, and 0 h before and 1 h
after i.v. inoculation of tumor cells

rats MADB106-induced
lung tumor

- lung tumor retention after 3 weeks ↑
- number of metastases ↑

- NK activity ↓

Forget (2010) [26] 40 µg/kg; i.p.; 1h before surgery rats

laparotomy
+/−

MADB106-induced
lung tumor

laparotomy:
- NK activity in non-operated and operated

animals until day 8 ↓
laparotomy + MADB106-induced lung tumor:

- number of metastases in non-operated
animals ↑

Filipczak-Bryniarska
(2012) [33]

healthy animals:
10 mg/kg; i.p.; two times within 24

h for 5d
disease model and transfer experiments:
10 mg/kg; i.p.; two times within 24

h for up to 7d
→ application in the induction

and effector phase

mice

healthy mice
+

contact
hypersensitivity

model(CHS;
pre-treatment
with opioids)

healthy mice:
- humoral immune response (=number of

plaque forming cells) ↓
- serum levels of IgG antibodies ↓

- ROS production by macrophages ↑
- percentage of CD4+CD8+ cells in the blood ↓

- percentage of NK in the blood ↓
- expression of cell surface markers for antigen

presentation on peritoneal macrophages ↓
- production of TNF-α and IL-6 by

macrophages not changed
application in the induction phase of CHS:

- early immune response after 2 h not changed
- late immune response after 24 h ↑

application in the effector phase of CHS:
- early immune response after 2 h ↑
- late immune response after 24 h ↑

Molina-Martínez
(2014) [24]

acute study:
0.001–0.1 mg/kg; once i.p

→ 10 min before LPS application
→ sacrifice 60 min later

chronic study:
0.1 mg/kg every 8h i.p.; to

complete 6 or 10 doses.
→ 10 min after the last opiate

administration challenging to LPS
→ sacrifice 60 min later

mice LPS-induced
inflammation

acute study:
- TNF-α release in the peritoneal cavity in

response to LPS ↓
= anti-inflammatory effect mediated by

intraperitoneal macrophages
chronic study:

- TNF-α release in the peritoneal cavity in
response to LPS ↑

= pro-inflammatory effect
= sensitization towards LPS application

Hydromorphone

Sacerdote
(1997) [37] 2.5–20 mg/kg; once s.c. mice /

- splenocyte proliferation not changed
- NK activity not changed

- IL-2 production by splenocytes not changed
BUT:

- splenocyte proliferation and IL-2 production
had a tendency to be reduced after

hydromorphone application
→ study showed no data for chronic

application (administration several times)
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Table A1. Cont.

Reference Dosage, Route of Application,
Duration Species Disease Model End Points/Measured Parameters

Methadone

van der Laan
(1995) [73]

0.20–0.80 g/kg for 6 weeks (admixed
into food) rats /

- weight testes and lymph nodes ↑
- decrease in vacuolization of the hepatocytes ↓

(= glycogen storage ↓)
- extramedullary hematopoiesis in the spleen ↓

- cell density in the medullary cords of the
mesenterial lymph nodes ↑

- serum levels of IgG antibodies ↑

LeVier (1995) [45]

healthy mice:
10–30 mg/kg; once s.c.
→ sacrifice 60 min later

infection model:
10–30 mg/kg; once s.c.

→ bacterial challenge 60 min later
→ sacrifice at day 7 or 14

mice

healthy mice
+

infection with
Listeria

monocytogenes or
Streptococcus
pneumoniae

healthy mice:
- splenocyte proliferation ↓
- cytotoxic T cell activity ↑

- change of the reticuloendothelial system
- erythrocyte number dose-dependent ↑

- number of B-cells at 10 mg/kg ↓
- primary IgM of splenocytes at 20 mg/kg ↓

- number of CD4+ and CD4+CD8+ at 10 mg/kg
↓

infection model:
- host resistance towards Listeria monocytogenes

not altered
- host resistance towards Streptococcus

pneumoniae ↑

De Waal (1998) [25] 200 or 400 mg/kg food;
administration up to 42d rats

infection with
Listeria

monocytogenes or
Trichinella spiralis

- serum corticosterone levels were not affected
- IgG antibody titers at 400 mg/kg food ↑

- clearance of Listeria monocytogenes bacteria in
the spleen not affected

- host resistance to Trichinella spiralis not affected

Hutchinson
(2004) [79]

1.5–3 mg/kg; once i.p.
→ sacrifice 120 min after application mice / - splenocyte proliferation ↑

Filipczak-Bryniarska
(2012) [33]

healthy animals:
30 mg/kg; i.p.; one dose within 24 h

for 5d
disease model and transfer experiments:
30 mg/kg; i.p.; one dose within 24 h

for up to 7d
→ application in the induction and

effector phase

mice

healthy mice
+

contact
hypersensitivity

model
(CHS;

pre-treatment
with opioids)

healthy mice:
- humoral immune response (=number of

plaque forming cells) ↓
- serum levels of IgG antibodies ↓

- ROS production by macrophages ↑
- percentage of CD4+CD8+ cells in the blood ↓

- percentage of NK in the blood ↓
- percentage of monocytes/macrophages in the

blood ↓
- expression of cell surface markers for antigen

presentation on peritoneal macrophages ↓
- production of TNF-α and IL-6 by

macrophages ↑
Application in the induction phase of CHS:

- early immune response after 2 h ↑
- late immune response after 24 h ↑

Application in the effector phase of CHS:
- early immune response after 2 h ↑
- late immune response after 24 h ↓

Kafami (2013) [34]

10 mg/kg*d-1 i.p.
→ start 3d after EAE induction
→ application for 33d

(until day 35 = end point)

mice

MOG35-55-induced
experimental
autoimmune

encephalomyelitis
(EAE)

- severity of EAE ↓
- clinical score ↓

- infiltration of immune cells into bone marrow
↓

- production of IL-2 by T-cells ↓
- production of IL-6, IL-17 and IFN-γ by

splenocytes ↓
= changed immune response and different

pathogenesis of the model
Nalorphine

Sacerdote (1997) [37] 2.5–20 mg/kg; once s.c. mice /
- splenocyte proliferation ↓

- NK activity ↓
- IL-2 production by splenocytes ↓

Naloxone

Sacerdote (1997) [37] 2.5–20 mg/kg; once s.c. mice /

- splenocyte proliferation ↑
- NK activity not changed

- IL-2 production by splenocytes ↑
BUT:

- no analgesic effect
= no use as pain killers
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Table A1. Cont.

Reference Dosage, Route of Application,
Duration Species Disease Model End Points/Measured Parameters

Naltrexone

Sacerdote
(1997) [37] 2.5–20 mg/kg; once s.c. mice /

- splenocyte proliferation ↑
- NK activity not changed

- IL-2 production by splenocytes ↑
BUT:- no analgesic effect = no use as pain killers

Oxycodone

Sacerdote
(1997) [37] 2.5–20 mg/kg; once s.c. mice /

- splenocyte proliferation not changed
- NK activity not changed

- IL-2 production by splenocytes not changed
BUT:

- splenocyte proliferation and IL-2 production
have a tendency to be reduced after oxycodone

application
→ study showed no data for chronic application

(administration several times)

Filipczak-Bryniarska
(2018) [64]

healthy animals:
20 mg/kg i.p.; two doses within 24 h

for 7d
disease model and transfer experiments:
20 mg/kg i.p.; two doses within 24 h

for up to 11d
→ application in the induction and

effector phase

mice

healthy mice
+

contact
hypersensitivity

model
(CHS;

pre-treatment
with opioids)

healthy mice:
- humoral immune response (=number of plaque

forming cells) not changed
- ROS and NO generation by macrophages ↑

- intensity of fluorescence of cell surface markers
for antigen presentation on macrophages ↓

- production of IL-12 by macrophages ↓
Application in the induction phase of CHS:

- early immune response after 2h (↑)
- late immune response after 24h not changed

Application in the effector phase of CHS:
- early immune response after 2 h not changed
- late immune response after 24 h not changed

- late immune response after 48 h ↓

Filipczak-Bryniarska
(2018) [68]

20 mg/kg; i.p.; two doses within 24
h for 7d mice /

- phagocytosis of sheep red blood cells by
macrophages ↑

- phagocytosis of zymosan-green by
macrophages ↓

Tapentadol

Franchi (2017) [32]

acute study:
20–30 mg/kg; once s.c.

→ sacrifice 120 min after application
chronic study:

20 mg/kg; once s.c. for 4–7 days
→ sacrifice 24 h after application

mice

acute study:
/

chronic study:
healthy animals

+
sciatic nerve

chronic
constriction
injury (CCI;
neuropathic

model)

acute study (healthy animals):
- production of IFN-γ, IL-2, IL-10 and IL-4 not

changed
chronic study—healthy animals:

- production of IFN-γ, IL-2, IL-10 and IL-4 not
changed after 4 + 7 days

but:- production of IFN-γ after 4 days ↑
- production of IL-2 after 4 days ↓

chronic study—CCI model (compared to untreated CCI):
- anti-hyperalgesic and anti-allodynic effect

- IL-10 production of splenocytes ↑
= therapeutic effect

- no reduction of IL-2, IL-4, and IL-10 production
= altered disease model

Tramadol

Sacerdote
(1997) [48]

acute study:
0.1–80 mg/kg; once s.c.
→ sacrifice 60 min later

chronic study:
20 mg/kg; 2 times daily; s.c. for 2

weeks
→ sacrifice 24 h after the last

application

mice /

acute study:- splenocyte proliferation ↑
- NK activity ↑

- IL-2 production by splenocytes ↑
chronic study:

- splenocyte proliferation not changed
- NK activity not changed

- IL-2 production by splenocytes not changed
BUT:- all parameters have a tendency to be

reduced after tramadol application and were
significantly altered after repeated application
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Table A1. Cont.

Reference Dosage, Route of
Application, Duration Species Disease Model End Points/Measured Parameters

Bianchi
(1999) [36]

1.23–20 mg/kg; once i.p.
→ 15 min before induction of

inflammation
→ sacrifice 3 h or 6 h after

application

rats

yeast-induced
inflammation

+
carrageenin-induced

inflammation

yeast-induced inflammation (3 h after yeast application):
- oedema ↓

- paw hyperalgesia ↑
carrageenin-induced inflammation (6 h after sponge implantation):

- volume of inflammatory exudate ↓
- PGE2 concentrations ↓- PGE2-like activity ↓

Sacerdote
(1999) [47]

20 + 40 mg/kg; once i.p.
→ sacrifice 60min later mice /

- splenocyte proliferation ↑
- NK activity ↑

Tsai (2001)
[44]

acute study:
20 + 40 mg/kg; once s.c. at d6

after surgery
→ sacrifice 60 min after

application
chronic study:

80 mg/kg; s.c. for 7d via
osmotic pump

→ sacrifice at day 12 after
hyperalgesia measurement

rats

acute study:
CCI

chronic study:
CCI

acute study:
- CCI rats exhibited dose-dependent reversal of paw withdrawal

latency (thermal hyperalgesia)
- NK activity not changed
- splenocyte proliferation ↓

chronic study:
acute study:

- CCI rats exhibited dose-dependent reversal of paw withdrawal
latency (thermal hyperalgesia)

- NK activity not changed
- splenocyte proliferation ↓

Gaspani
(2002) [43]

20 + 40 mg/kg; s.c.; 3 doses
→ 30 min before

surgery, 15 min after surgery,
and 5 h after surgery

rats

laparotomy
+

MADB106-induced
lung tumor

- at the dose of number of 40 mg/kg number of lung metastases ↓
- splenic NK activity of non-operated animals by 40 mg/kg ↑

- 20 + 40 mg/kg tramadol prevented reduced splenic NK activation
after surgery

Rätsep
(2013) [77]

20 mg/kg, s.c., once a day
→ observation until d7 after

the surgery
mice

no real disease model;
test of analgesics for

telemeter implantation

- recovery of body weight at d5 post-surgery
- food intake the first 3 days ↓

- daytime mean arterial pressure ↓
- night time mean arterial pressure ↓

Blennerhasset
(2017) [35]

healthy animals:
20 mg/kg s.c. once daily for 5d

disease model:
20 mg/kg s.c. once daily for 8d

mice

healthy mice
+

dextran sodium sulfate
(DSS)-induced colitis
and trinitrobenzene

sulfonic acid
(TNBS)-induced colitis

healthy mice:
- no effect on food and water intake
application in DSS-induced colitis:

- microscopic inflammation not affected
- MPO activity not affected

application in TNBS-induced colitis:
- progressive weight loss similar to TNBS alone

- number of circulating smooth muscle cells in the colon unaffected
- tramadol did not affected decrease in neuron number

Jirkof (2019)
[42]

0.1 mg/mL (Tlow) and 1.0
mg/mL (Thigh) via drinking

water for 3 days
mice osteotomy model

- food and water intake at high concentration ↓
- model-specific pain behavior ↓, not further amelioration by Thigh

- higher limp score at 1h post-osteotomy
- no impact on bone fracture healing (bone volume fraction) and

vessel formation

Remifentanil

Sacerdote
(2001) [49]

50 µg/kg*min-1; infusion for 60
min

→ sacrifice 5 h after end of the
infusion

rats /

- lymphocyte proliferation in the blood↓
- NK activity in the blood ↓
- splenocyte proliferation ↓

- splenic NK activity ↓

Zhang
(2014) [41]

0.04 mg/kg; for 10 min i.v.
→ sacrifice 8 h after

challenging towards LPS
rats LPS-induce acute lung

injury (ALI)

- damaged lung tissue (thickening of the alveolar wall, interstitial
oedema) ↓

- ALI-associated increase of pro-inflammatory cytokines (TNF-α,
IL-1β, and IL-6) in the lung ↓

- reduced MPO activity
- infiltration of neutrophils ↓

- immune cell infiltration in the lung ↓

α: alpha; ADX: adrenalectomized; ALI: acute lung injury; β: beta; CCI: chronic constriction injury; CHS: contact
hypersensitivity model; Con-A: Concanavalin-A; CVB3: coxsackievirus B3; d: day; DSS: dextran sodium sulfate;
EAE: experimental autoimmune encephalomyelitis; γ: gamma; h: hours; IFN-γ: interferon-γ IL: interleukin;
i.p.: intraperitoneal injection; LPS: lipopolysaccharide; MPO: myeloperoxidase; NK: natural killer cell; NO: nitric
oxide; µ: micro; min: minutes; PGE2: prostaglandin 2; ROS: reactive oxygen species; s.c: subcutaneously;
TNF-α: tumor necrosis factor-α; TNBS: trinitrobenzene sulfonic acid; ↑: increase; ↓: decrease; →: followed by;
+: positive; /: not studied.
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