11 research outputs found

    Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures

    Get PDF
    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory (DFT) calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.Comment: 3 pages, 3 figure

    Manipulating the voltage drop in graphene nanojunctions using a gate potential

    Get PDF
    Graphene is an attractive electrode material to contact nanostructures down to the molecular scale since it can be gated electrostatically. Gating can be used to control the doping and the energy level alignment in the nanojunction, thereby influencing its conductance. Here we investigate the impact of electrostatic gating in nanojunctions between graphene electrodes operating at finite bias. Using first principles quantum transport simulations, we show that the voltage drop across \emph{symmetric} junctions changes dramatically and controllably in gated systems compared to non-gated junctions. In particular, for \emph{p}-type(\emph{n}-type) carriers the voltage drop is located close to the electrode with positive(negative) polarity, i.e. the potential of the junction is pinned to the negative(positive) electrode. We trace this behaviour back to the vanishing density of states of graphene in the proximity of the Dirac point. Due to the electrostatic gating, each electrode exposes different density of states in the bias window between the two different electrode Fermi energies, thereby leading to a non-symmetry in the voltage drop across the device. This selective pinning is found to be independent of device length when carriers are induced either by the gate or dopant atoms, indicating a general effect for electronic circuitry based on graphene electrodes. We envision this could be used to control the spatial distribution of Joule heating in graphene nanostructures, and possibly the chemical reaction rate around high potential gradients.Comment: 6 pages, 7 figure

    Large-scale tight-binding simulations of quantum transport in ballistic graphene

    Get PDF
    Graphene has proven to host outstanding mesoscopic effects involving massless Dirac quasiparticles travelling ballistically resulting in the current flow exhibiting light-like behaviour. A new branch of 2D electronics inspired by the standard principles of optics is rapidly evolving, calling for a deeper understanding of transport in large-scale devices at a quantum level. Here we perform large-scale quantum transport calculations based on a tight-binding model of graphene and the non-equilibrium Green's function method and include the effects of p−np-n junctions of different shape, magnetic field, and absorptive regions acting as drains for current. We stress the importance of choosing absorbing boundary conditions in the calculations to correctly capture how current flows in the limit of infinite devices. As a specific application we present a fully quantum-mechanical framework for the "2D Dirac fermion microscope" recently proposed by B{\o}ggild et al.et\, al. [Nat. Comm. 8, 10.1038 (2017)], tackling several key electron-optical effects therein predicted via semiclassical trajectory simulations, such as electron beam collimation, deflection and scattering off Veselago dots. Our results confirm that a semiclassical approach to a large extend is sufficient to capture the main transport features in the mesoscopic limit and the optical regime, but also that a richer electron-optical landscape is to be expected when coherence or other purely quantum effects are accounted for in the simulations.Comment: 12 pages, 10 figure

    Ab initio current-induced molecular dynamics

    Full text link
    We extend the ab initio molecular dynamics (AIMD) method based on density functional theory to the nonequilibrium situation where an electronic current is present in the electronic system. The dynamics is treated using the semi-classical generalized Langevin equation. We demonstrate how the full anharmonic description of the inter-atomic forces is important in order to understand the current-induced heating and the energy distribution both in frequency and in real space

    Multi-scale approach to first-principles electron transport beyond 100 nm

    Full text link
    Multi-scale computational approaches are important for studies of novel, low-dimensional electronic devices since they are able to capture the different length-scales involved in the device operation, and at the same time describe critical parts such as surfaces, defects, interfaces, gates, and applied bias, on a atomistic, quantum-chemical level. Here we present a multi-scale method which enables calculations of electronic currents in two-dimensional devices larger than 100 nm2^2, where multiple perturbed regions described by density functional theory (DFT) are embedded into an extended unperturbed region described by a DFT-parametrized tight-binding model. We explain the details of the method, provide examples, and point out the main challenges regarding its practical implementation. Finally we apply it to study current propagation in pristine, defected and nanoporous graphene devices, injected by chemically accurate contacts simulating scanning tunneling microscopy probes

    ElectronicStructureLibrary/flook: v0.7.0

    No full text
    Release of flook with new build-system. The build system is made about the smeka build system. Now it is easier to create a build

    Old Law Building Reading Room

    Get PDF
    Old Law Building Reading Roomhttps://scholarship.law.ufl.edu/uf-law-photo-gallery/1037/thumbnail.jp
    corecore