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Manipulating the voltage drop in graphene
nanojunctions using a gate potential†

Nick Papior,*ab Tue Gunst,ab Daniele Stradiab and Mads Brandbygeab

Graphene is an attractive electrode material to contact nanostructures down to the molecular scale

since it can be gated electrostatically. Gating can be used to control the doping and the energy level

alignment in the nanojunction, thereby influencing its conductance. Here we investigate the impact of

electrostatic gating in nanojunctions between graphene electrodes operating at finite bias. Using

quantum transport simulations based on density functional theory, we show that the voltage drop across

symmetric junctions changes dramatically and controllably in gated systems compared to non-gated

junctions. In particular, for p-type(n-type) carriers the voltage drop is located close to the electrode with

positive(negative) polarity, the potential of the junction is pinned to the negative(positive) electrode. We

trace this behaviour back to the vanishing density of states of graphene in the proximity of the Dirac

point. Due to the electrostatic gating, each electrode exposes different density of states in the bias

window between the two different electrode Fermi energies, thereby leading to a non-symmetry in the

voltage drop across the device. This selective pinning is found to be independent of device length when

carriers are induced either by the gate or dopant atoms, indicating a general effect for electronic

circuitry based on graphene electrodes. We envision this could be used to control the spatial distribution

of Joule heating in graphene nanostructures, and possibly the chemical reaction rate around high

potential gradients.

Introduction

Graphene (Gr) shows great promise as a central material for
future two-dimensional (2D) nanoelectronic applications.1,2 In
particular, its semi-metallic character and its record high
mean-free path3 makes it a top candidate for ultra-fast and
flexible electronic components.4,5 Fuelled by these perspectives,
nanostructured devices down to the molecular scale using
electrodes based on Gr have recently been put forward.6–9 In
their most generic form, these devices are composed by a Gr
constriction where the narrowest junction consists of a Gr
nanoribbon (GNR)10,11 or an organic molecule.6–9 More complex
structures such as Gr antidot lattices12,13 can also be viewed as
consisting of a network of constrictions.

A unique feature of Gr electrodes is that their electronic
properties can easily be tuned by electrostatic gating. In fact,
electrostatic gates can be used to increase the carrier density in
Gr up to above 1013 cm�2.14 For ion gating it has even been
possible to reach carrier densities of 1014 cm�2 which correspond
to a Fermi energy shift of about 1 eV.15 It has been shown that

gating can be used to tune the resonances localized in the
narrowest part of the junction,16,17 as the electronic states of the
electrodes are usually affected only weakly by the gate-induced
capacitive field due to effective screening by the high density of
states (DOS).18 However, for Gr electrodes, the lower DOS and its
flat geometry, makes it comparable to the junction itself, and is
thus likely to be perturbed similarly by gating. This peculiarity
leads to a novel, yet largely unexplored, paradigm for graphene-
based electronics, as the transport characteristics of the device
ultimately depend on the response of the entire system to the gate.
In electronic transport simulations, the effect of electrostatic
gating and induced doping charge in the device has often been
mimicked by rigidly shifting the position the Fermi-level/chemical
potential in calculations without explicitly including the gate or
dopants.19–22 However, despite accounting for some of the effects,
these approaches completely neglect the self-consistent response
of the device to the additional charge doping or the gate-induced
electric field.

Here, we investigate these issues by extending the TranSIESTA
electronic transport package, based on density functional theory
and nonequilibrium Green function (DFT–NEGF),23,24 with the
inclusion of a physically motivated gate model, see Fig. 1a. This
improvement allows us to consider on an equal footing the effect
of charge doping, capacitive gate field, and of the finite bias
voltage in our DFT + NEGF simulations (see the Methods section
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for additional details of the implementation). We apply this
methodology to Gr constrictions consisting of nanoribbon
junctions between Gr electrodes. For these we demonstrate
how the transport characteristics depend in a non-trivial way
on the applied source/drain and gate voltages. As seen in
Fig. 1b, upon gating and bias, the voltage drop is pinned to
the electrode of a given polarity depending on the doping type
and the bias, even for a constriction of 8.3 nm. We can relate the
phenomenon to the gate-dependent behavior of the voltage
drop in the system which, in turn, can be traced back to the
energy dependence of the DOS in the Gr electrodes. The
electronic structure of the semi-metallic Gr electrodes displays
zero DOS at its charge neutrality point, and a linear increase of
the DOS away from it (V-shape). Our analysis demonstrates how
the V-shaped DOS in the electrodes control the voltage drop in
the Gr junctions indicating a quite generic scenario.

The control of the position of the voltage drop on the nano-
scale with gate could be useful in practical applications. We
envision this feature, f.ex., could be used to tune the spatial
distribution of Joule heating in the device and influence its
breaking at the nanoscale.21,25 Our results highlight the importance
of using fully self-consistent electronic transport simulations
to predict and design the gating behavior under operating
conditions of the emerging class of devices with electrodes
having a vanishing DOS.18

Results and discussion

We have applied our method to two geometrically similar, ‘‘left-
right’’ symmetric Gr nanojunctions, formed by a Gr nanoribbon
connected to pristine Gr electrodes, see Fig. 2 and 3. For zero
gate/doping (g = 0) the former yield an electron–hole symmetric
electronic structure (hydrogen GNR), whereas the latter yield a
e–h non-symmetric electronic structure (Oxygen GNR).26–28 The
hydrogen-terminated system is also investigated using dopant
atoms instead of the electrostatic gating.11 The simulation unit
cell has an area of B200 Gr unit cells. The gate is placed
20 beneath the planar Gr structure and we sweep the gating
levels (g) according to g � 1013 e� cm�2.

In Fig. 2a and b, we plot the potential drop across the Gr
constriction at 0.5 V for g = 0, (a), and n-doped with g = �2
gating, (b). The potential profile has been integrated in the
perpendicular direction to the Gr surface for electronic densities
above re = 0.008 e Å�3 projected onto the x–y plane. The lower
panels, (c) and (d), is a further projection onto the transport
direction (x) as indicated in Fig. 2b. At g = 0 we obtain
an anti-symmetric potential drop in the transport direction
(DV(x) = �DV(�x)) as expected for a fully e–h and left-right
symmetric constriction. On the other hand, in the g = �2
(n-doped Gr), we see a clear pinning of the potential profile
to the positive electrode, the potential drop at the negative
electrode. Conversely, calculations with g = +2 (p-doping) with
0.5 V display a pinning at the negative electrode, while for g = +2
and �0.5 V we regain the plot shown. This confirms the
geometric symmetry.

In Fig. 4 we show the electron transmission spectra for the
hydrogen passivated constriction at 0 V, (a), and 0.5 V, (b), for
different values of g each vertically shifted 1/2. As a measure of
gating we track the position of two resonances, and dots,
corresponding to a resonance in the constriction located at the

Fig. 1 (a) implementation of the field effect gate model. Redistribution of
charge from atoms to gate plane. (b) resulting voltage drop for a 8.3 nm
long constriction including a field effect gate of n = 2� 1013 e� cm�2 and a
bias of 0.5 V. Contour lines are separated by 0.022 V.

Fig. 2 Electronic Hartree potential drop integrated perpendicular to the
plane and above a cutoff electron density re = 0.008 e Å�3 and projected
to the graphene plane for the Hydrogen GNR, (a) and (b). (c) and (d) are the
contour plot further integrated in the box indicated in (b). The non-gated
system shows a linear gradient, whereas for g o 0 (n-doped) a pinning of
the potential towards the right (positive) electrode.

Fig. 3 Electronic Hartree potential drop integrated perpendicular to the
plane and above a cutoff electron density re = 0.008 e Å�3 and projected
to the graphene plane for the Oxygen GNR, (a) and (b). (c) and (d) are the
contour plot further integrated in the box indicated in (b). The non-gated
system shows a gradient at the GNR boundary, whereas for g o 0
(n-doped) a pinning of the potential towards the right (positive) electrode.
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edge and in the center, respectively. The middle thick line is the
transmission for g = 0, and is equivalent to earlier results where
these resonances are discussed.21 In addition, we plot the
energy shift of the Dirac point for pristine graphene as vertical
lines aligned at each of the two resonances at g = 0. These vertical
lines match exactly the shift in chemical potential due to the
doping in the electrodes. Discrepancies between the electrode
gating (lines) and the resonance positions (dots) illustrate the
difference in just rigidly shifting the resonances according to
electrode doping, and a fully self-consistent calculation of the
resonance positions. Importantly, at 0 V we find that the
resonance peaks does not simply follow the gating. Moreover,
the two peaks are shifting/gated independently of each other; the
center resonance peak, , follows the pristine doping closer than
the edge resonance peak, , due to a difference in electrode
coupling between the resonances. On the other hand, at 0.5 V
we find that both peaks follow the pristine graphene electrode
doping. As shown in Fig. 2b, the junction behaves as an extension
of the positive electrode and therefore the resonance position is
pinned at the Fermi level of this particular electrode. The self-
consistent calculation is needed to capture the correct transition
with bias from semi-independent resonances to the pinned
behavior. The same calculation was performed on a 8.3 nm
long ribbon Fig. 1b exhibiting the same pinning feature.

Fig. 3 are for the Oxygen terminated graphene nanoribbon.
This nanoribbon has no e–h electronic DOS symmetry.26–28

Similarly to the hydrogen system we calculate for g = 0 and
g = �2 at 0.5 V. a shows that the Oxygen edges pins slightly to
the negative electrode for zero gating, while gating, (b), the
entire ribbon is pinned to the positive electrode, equivalent to
the hydrogen case Fig. 2b. This is also seen in the projected
potential profiles Fig. 3c and d. This confirms that the selectivity
of the potential profile in the gated devices does not rely on the
e–h symmetry of the junction, and conjectures the generality of
this behavior in systems with electrodes having V-shaped DOS
around EF, regardless of the electronic structure of the central
part connecting the two electrodes.

The generic behavior of the potential drop just outlined is
summarized in Fig. 5, which shows the one-dimensional
potential drop calculated for the hydrogen-terminated constriction
for a number of different gates and positive bias voltages, similar
to that of Fig. 2c and d. Independently on the particular value of
the bias voltage applied, gating the system always leads to a
marked asymmetry of the potential drop across the constriction.
For any value of n-doping, the potential drop pins always to the
positive (right) electrode for positive bias. Similarly, for any value of
p-doping, the system couples to the negative (left) electrode for
positive bias. These results further demonstrate the general
phenomenon that does not depend on the particular values of
applied gate or bias voltage. Furthermore, our calculations
highlight the important fact that the charge neutrality point
for the electrodes is a special case which does not extrapolate to
the gated case. This becomes even more important if one
considers the experimental difficulties in retaining a charge
neutral sample.29,30

Fig. 4 Transmission spectra for the constriction at various doping levels
for 0 V, (a), 0.5 V, (b), and for dopants, (c). The middle line (black) at zero
gating is a symmetric transmission function with two distinct resonances
(marked , and ). Gating the constriction shifts the resonances as
indicated by the displacements of the marks. The full lines, crossing
vertically the different doping levels, indicates the graphene electrode
Fermi level shift due to the doping aligned at the g = 0 mark.

Fig. 5 (a)–(d) Integrated Hartree potential profile in a region of width
corresponding to the ribbon along the entire constriction for varying gate
levels and applied bias. The thick middle line is the potential profile for
g = 0. The blue regions correspond to n-doped graphene (full lines), while
red are p-doped graphene (dashed lines). The non-gated calculations
show a linear behavior whereas gated systems have a non-symmetry
between the left and right electrode DOS breaking the left-right anti-
symmetry in the potential drop. (e) summarizes the trends where L/R
means pinning to the left/right electrode.
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Voltage drop model

We will now consider a simple model which can explain the
electrode selectivity of the voltage drop depending on the
doping/electrostatic gating. Fig. 6 is a guided reference for
the following discussion. The position of the voltage drop can
be obtained by considering the change in charge in the scattering
region when applying a bias. If the scattering region becomes
more positive, one can view it as the positive electrode extending
into the scattering region and thus the voltage drop will occur
closer to the negative electrode and vice versa. The change in
charge in the scattering region is linked to the change in injected
charge from left and right electrodes in the bias window, as noted
in the Methods section. The linear dependence of the DOS in the
graphene electrodes makes the coupling/broadening functions of
the scattering region display the energy dependence,

GL/R(E) p |E � mL/R + EF|, (1)

where E = 0 corresponds to the equilibrium Fermi level, EF is
the shift of Fermi level due to doping, EF /

ffiffiffi
g
p

, and mL/R is the
change in the chemical potential of left/right electrodes with
applied voltage bias (V). We will use mL = eV/2 and mR = �eV/2,
and take V 4 0. This definition means that the scattering
region as a starting point will not preferentially select the left or
right electrode for an electron–hole symmetric system, and
the potential drop profile will be spatially anti-symmetric,
DV(x) = �DV(�x). We will now consider the voltage bias as a
‘‘perturbation’’ onto the system without bias, and calculate the
change in charge in the scattering region. Thus we first neglect
the change in potential set up by the change in charge, which
again will impact the charge in the self-consistency. With this
we have the density of scattering states from left and right,
AL/R p GL/R p |E� mL/R + EF|, and the change in electrons(holes)
injected from left(right) electrode can be written as,

de ¼
ðeV =2

0

ALðEÞdE /
eV
2

EF �
eV
4

� �
; (2)

dh ¼
ð0
�eV =2

ARðEÞdE /
eV
2

EF þ
eV
4

� �
(3)

where we assume |V/2| o |EF|. The scenario is shown schematically
in Fig. 6b showing more injection of positive carriers dh 4 de.
Thus the scattering region will as the first response to the

nonequilibrium filling become more positive and we conclude
that for n-doping, g o 0 and EF 4 0, the positive electrode will
‘‘extend’’ into the constriction resulting in a voltage drop at the
negative electrode, as seen in Fig. 5. We stress that this behavior
stems from the vanishing DOS of graphene at the Dirac point
yielding a large relative difference between the electron/hole
contributions. Contrary if we take EF to be very large in eqn (2)
and (3) we get de E dh and the constriction does not change its
charge. Indeed, the pinning effect is smaller at 1 V compared to
0.5 V as seen in Fig. 5a vs. 5c. This is due to the DOS of one lead
being very close to zero at 0.5 V; mi � EF E ED with ED being the
Dirac point, and hence a much larger relative difference in DOS.

In order to substantiate that the voltage drop is controlled
by the vanishing electrode DOS we smear the DOS energy
dependence gradually into a flat function by introducing an
artificial increase in the broadening parameter, Z, for the
electrode self-energies in eqn (4). Hence GL(E) E GR(E) for
Z c 0 irrespective of the applied bias and gating. This forces
de E dh and a resulting anti-symmetric voltage drop. Fig. 7
shows the voltage drop in the middle part of the constriction for
four Z values. Clearly the anti-symmetric voltage drop is regained
when ZL,R Z 0.5 eV. Note that since we have not made assumptions
in the model about the nature of the constriction we anticipate
that it can straightforwardly be applied to similar systems
between graphene electrodes in the high-conductance regime.

Constriction, hydrogen terminated with dopants

Since Gr consists entirely of surface atoms it is also extraordinarily
susceptible to external influences such as chemical modification
or charged impurities. We will now discuss the influence of

Fig. 6 Illustration of non-symmetric coupling induced by doping out of
symmetry. (a) Shows the zero bias configuration with broken e–h sym-
metry due to doping, g o 0. (b) Shows a difference among the electrode
contributions in the bias window which pins the system to the right
electrode.

Fig. 7 Change of potential drop vs. level broadening parameter, ZL/R, for
0.5 V. Increasing values smear out the electrode DOS which evens out the
electronic contribution from both electrodes in the bias window. The
voltage drop becomes anti-symmetric at even charge injection rates from
the two electrodes (large smearing).
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modifying the passivation or having adatoms31–34 as a source
of charge doping alternative to the electrostatic gating. We
examine the effect of a donating lithium (Li) or an accepting
flourine (F) adatom placed either inside or outside the constriction
at the positions shown in Fig. 2a. The Li or F atoms are positioned
above the center of a hexagon, or ontop a Carbon atom, respectively.
In Fig. 4c we show the transmission for the different adatom
configurations. The transmission spectra indicate that very little
scattering due to the dopants themselves takes place, especially
when the adatoms are positioned outside the constriction. The
doping effect is clearly seen from the shift in the two resonance
peak positions. Li will n-dope the graphene constriction while
F p-dope it. Surprisingly, we find that most of the charge
transfer to the device resonances is maintained when the
dopants are moved outside the constriction. This suggests that
nanostructured graphene devices will not necessarily be very
sensitive to the actual position of the adatoms. In the case of F it
is actually more efficient outside the constriction. Comparing
the most significant peak with the field effect gating transmission
curves we find that Li donates at least 0.2 electrons while F accepts
at least 0.3 electrons from graphene. In addition, we find that a
pinning of the potential to the positive/negative electrode occurs
for Li(n-doping)/F(p-doping) for positive bias, consistent with
the potential drops obtained from field effect gating (see Fig. 2).
Adatoms may therefore provide an alternative way to manipulate
the voltage drop by pinning the potential to either of the two
electrodes. This underlines the conclusion that the main effect is
determined by the addition or removal of charge from the device,
together with the uneven injection rates from the electrodes.

Conclusion

We have implemented an electrostatic gate method which
introduce charge carriers and the corresponding electric field
in a capacitor-like setup in self-consistent DFT–NEGF calculations
with open boundary conditions to semi-infinite electrodes. The
gate method has been applied to several graphene constrictions
where the narrowest junction corresponds to a graphene nano-
ribbon with either hydrogen or oxygen passivation. For positive
voltage bias and with electrostatic gating the junction potential
gets preferentially pinned to the positive(negative) electrode for
n(p)-type doping charge, and vice versa for polarity changes
of gating and/or bias. Thus the position of the voltage drop
can be manipulated by the gate potential or correspondingly
from charge doping from adatoms. The constrictions was found
to couple selectively to the electrode with the highest DOS
contribution in the bias window. The behavior was traced back
to the vanishing DOS of graphene close to the Dirac point. A
simple perturbation model showed how the selectivity is due to
the low DOS of graphene around the Fermi level, irrespective of
the details of the junction electronic structure. The V-shaped
DOS is also true for the local DOS at armchair edges.19 Thus we
anticipate that our results also apply to molecular junctions
more weakly coupled via a barrier to armchair edges of graphene.
We suggest that this selectivity and high potential gradient can be

utilized in experiments on nanostructured graphene or similar
2D materials to control regions of reactivity, manipulate polar
adsorbates, or providing control of and insights into the local
Joule heating.25,35 We expect that Kelvin Atomic Force Micro-
scopy,36 Scanning Tunnelling Potentiometry37 or Low-Energy
Electron Potentiometry38 to be suitable experimental techniques
to examine the effect pointed out here in nanostructured graphene.

Methods

The simulations have been performed using the SIESTA/TranSIESTA
code with the PBE-GGA functional for exchange-correlation39 and a
SZP basis-set. A confinement radii determined from an energy shift
of 230 meV. The real-space grid cutoff was 230 Ry. The electronic
temperature has been set to 25 meV (50 meV for the O-terminated
constriction). Unless stated otherwise, the smearing parameter Z was
set to 10�2 eV. The geometries were relaxed until all forces were
smaller than 5 � 10�2 eV Å�1. Five transverse k-points were used in
the electronic structure calculation. This was increased to between
25 and 50 k-points in the transport calculations. The transmission
data have subsequently been interpolated.40 A vacuum gap of 120
was used in the direction normal to the constriction plane.

Our field effect setup consists of a gate electrode, a dielectric,
and the system, here being the graphene nanojunctions. Applying
a gate voltage charges the system and electrodes like in a capacitor
setup, thus inducing an electrostatic potential gradient across the
dielectric, which in this implementation is vacuum. The additional
charge will redistribute to create a polarization in the system
along the electric field direction. Such field effect setups can be
realized in open-boundary DFT calculations by employing a
nonequilibrium Green function (NEGF) scheme,24,41 or by solving
the Poisson equation with appropriate boundary conditions.42,43

The former is a computationally expensive calculation compared
to the latter.

Analogous to a plate capacitor setup we assume that an
applied gate voltage induces an electron charge �de� in the
system and a corresponding counter-charge +de� in the gate
plane. This situation is accounted for by charging the system
with a given electron charge g = �de�, and by distributing
homogeneously the corresponding counter-charge +de� in a
well defined region of the unit-cell, denoted gate, so that the
overall system + gate remains charge neutral. The setup is
shown schematically in Fig. 1a. Thus for g 4 0 we have a
p-doped system, similarly for g o 0 we have a n-doped system.
Solving the Poisson equation inherently calculates the electric
field between the gate and the system. As the calculation cell is
periodic we apply the slab dipole correction42 to terminate the
periodic electric field induced by the charge redistribution. The
gating method can readily be adopted to transport calculations
using NEGF if the gate is uniformly applied to the electrodes
and the device. Additionally, the gate at the electrodes must
have a resulting electric field perpendicular to the applied bias
to assert the correct boundary conditions. Our implementation
resembles that of Brumme44,45 except that we use a linear
combination of atomic orbitals method, which means that
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the dielectric need not be simulated by a potential barrier to
limit electronic penetration.

We note that the DFT–NEGF24 calculation relies on calculating
the density by occupying the left and right scattering states to
the different respective chemical potentials. This is done by
integrating the left/right spectral density matrices, AL/R, given in
terms of the retarded Greens function, G,

AL/R(E) = G(E)GL/R(E)G†(E), (4)

G(E) = [(E + iZ)S � H � SL(E) � SR(E)]�1. (5)

Here H, S, GL/R(E) = i[SL/R(E) � S†
L/R(E)] are the Hamiltonian, the

overlap and the electrode broadening matrices. The parameter
Z - 0+ introduce a vanishingly small broadening of DOS.
However, a finite Z broadens the electrode DOS.

The simple Voltage drop model is developed based on the
following more detailed description. We consider a left-right
symmetric conductor. In nonequilibrium the density (matrix)
can formally be written at as an ‘‘equilibrium’’ contribution
corresponding to the equilibrium Fermi energy, EF, plus two
‘‘nonequilibrium’’ contributions originating from the change
in filling of left and right originating scattering states, say,
mL 4 EF 4 mR. The ‘‘nonequilibrium’’ terms corresponding to
negative charge injection from the negative electrode, and
positive charge injection from the positive electrode,

r ¼ �1
p

ð
dE ImðEÞnF;EF þ de� dh; (6)

where de and dh are defined in eqn (2) and (3). We choose
EF = (mL + mR)/2 and consider the different fillings as a
perturbation. If we neglect the resulting Landauer dipole field
in H, which appear in the response to this perturbation in the
self-consistent DFT–NEGF calculation, then the first ‘‘equilibrium’’
term can not break left-right symmetry and result in a left-right
symmetric density. It is then clear that the symmetry breaking and
charge in the device is determined by the competition between the
latter two contributions which are of opposite sign.

The systems studied here belong to the class highly
conducting carbon junctions for which the DFT–NEGF method
has been compared favorably to detailed experiments both in
the linear46,47 and non-linear conductance regime.48 In any
case, we are here mainly interested in the qualitative aspects of
the behavior of the voltage drop.
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20 B. K. Nikolić, K. K. Saha, T. Markussen and K. S. Thygesen,

J. Comput. Electron., 2012, 11, 78–92.
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