100 research outputs found

    Frustration driven structural distortion in VOMoO4

    Full text link
    Nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), magnetization measurements and electronic structure calculations in VOMoO4 are presented. It is found that VOMoO4 is a frustrated two-dimensional antiferromagnet on a square lattice with competing exchange interactions along the side J1 and the diagonal J2 of the square. From magnetization measurements J1+J2 is estimated around 155 K, in satisfactory agreement with the values derived from electronic structure calculations. Around 100 K a structural distortion, possibly driven by the frustration, is evidenced. This distortion induces significant modifications in the NMR and EPR spectra which can be accounted for by valence fluctuations. The analysis of the spectra suggests that the size of the domains where the lattice is distorted progressively grows as the temperature approaches the transition to the magnetic ground state at Tc=42 K

    Twisted mass fermions: neutral pion masses from disconnected contributions

    Get PDF
    Twisted mass fermions allow light quarks to be explored but with the consequence that there are mass splittings, such as between the neutral and charged pion. Using a direct calculation of the connected neutral pion correlator and stochastic methods to evaluate the disconnected correlations, we determine the neutral pion mass. We explore the dependence on lattice spacing and quark mass in quenched QCD. For dynamical QCD, we determine the sign of the splitting which is linked, via chiral PT, to the nature of the phase transition at small quark mass.Comment: 6 pages, poster (hadron spectrum and quark masses) at Lattice 2005,Dublin, July 25-3

    B_d-Bbar_d Mixing and the B_d -> J/psi K_s Asymmetry in General SUSY Models

    Full text link
    We present a next-to-leading order determination of the gluino-mediated SUSY contributions to B_d-Bbar_d mixing and to the CP asymmetry a_{J/psi K_s} in the framework of the mass-insertion approximation. Using hadronic matrix elements recently computed on the lattice, we obtain improved constraints on the squark-mass splittings.Comment: 17 pages, 13 figure

    Neurite Orientation Dispersion and Density Imaging Color Maps to Characterize Brain Diffusion in Neurologic Disorders

    Get PDF
    Purpose: Neurite orientation dispersion and density imaging (NODDI) has recently been developed to overcome diffusion technique limitations in modeling biological systems. This manuscript reports a preliminary investigation into the use of a single color-coded map to represent NODDI-derived information. Materials and methods: An optimized diffusion-weighted imaging protocol was acquired in several clinical neurological contexts including demyelinating disease, neoplastic process, stroke, and toxic/metabolic disease. The NODDI model was fitted to the diffusion datasets. NODDI is based on a three-compartment diffusion model and provides maps that quantify the contributions to the total diffusion signal in each voxel. The NODDI compartment maps were combined into a single 4-dimensional volume visualized as RGB image (red for anisotropic Gaussian diffusion, green for non-Gaussian anisotropic diffusion, and blue for isotropic Gaussian diffusion), in which the relative contributions of the different microstructural compartments can be easily appreciated. Results: The NODDI color maps better describe the heterogeneity of neoplastic as well inflammatory lesions by identifying different tissue components within areas apparently homogeneous on conventional imaging. Moreover, NODDI color maps seem to be useful for identifying vasogenic edema differently from tumor-infiltrated edema. In multiple sclerosis, the NODDI color maps enable a visual assessment of the underlying microstructural changes, possibly highlighting an increased inflammatory component, within lesions and potentially in normal-appearing white matter. Conclusion: The NODDI color maps could make this technique valuable in a clinical setting, providing comprehensive and accessible information in normal and pathological brain tissues in different neurological pathologies

    A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Full text link
    We discuss the renormalisation properties of the complete set of ΔB=2\Delta B = 2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely.Comment: 41 pages, 6 figure

    Silent progression in disease activity-free relapsing multiple sclerosis.

    Get PDF
    ObjectiveRates of worsening and evolution to secondary progressive multiple sclerosis (MS) may be substantially lower in actively treated patients compared to natural history studies from the pretreatment era. Nonetheless, in our recently reported prospective cohort, more than half of patients with relapsing MS accumulated significant new disability by the 10th year of follow-up. Notably, "no evidence of disease activity" at 2 years did not predict long-term stability. Here, we determined to what extent clinical relapses and radiographic evidence of disease activity contribute to long-term disability accumulation.MethodsDisability progression was defined as an increase in Expanded Disability Status Scale (EDSS) of 1.5, 1.0, or 0.5 (or greater) from baseline EDSS = 0, 1.0-5.0, and 5.5 or higher, respectively, assessed from baseline to year 5 (±1 year) and sustained to year 10 (±1 year). Longitudinal analysis of relative brain volume loss used a linear mixed model with sex, age, disease duration, and HLA-DRB1*15:01 as covariates.ResultsRelapses were associated with a transient increase in disability over 1-year intervals (p = 0.012) but not with confirmed disability progression (p = 0.551). Relative brain volume declined at a greater rate among individuals with disability progression compared to those who remained stable (p < 0.05).InterpretationLong-term worsening is common in relapsing MS patients, is largely independent of relapse activity, and is associated with accelerated brain atrophy. We propose the term silent progression to describe the insidious disability that accrues in many patients who satisfy traditional criteria for relapsing-remitting MS. Ann Neurol 2019;85:653-666
    corecore