38 research outputs found

    Silica botryoids from chemically oscillating reactions and as Precambrian environmental proxies

    Get PDF
    In this petrographic and geochemical study, we differentiated diverse quartz botryoids, including circular-concentric, twinned, columnar, wavy, and stromatolite-like structures versus synchronous biotic patterns of similar geometry and size dimensions (filamentous traits and stromatolites) in Precambrian cherts of Barberton, South Africa, and Gunflint, Canada. The botryoidal habits explored retained self-similar patterns of radially aligned acicular quartz with concentric laminae, which are not documented in biologically built stromatolites. These ancient fractals and their composition imitate those in chemically oscillating reactions, implying that the precipitation of botryoids was fueled by abiotic diagenetic degradation of organic matter and subsequently metamorphosed into chert

    Extensive primary production promoted the recovery of the Ediacaran Shuram excursion

    Get PDF
    Member IV of the Ediacaran Doushantuo Formation records the recovery from the most negative carbon isotope excursion in Earth history. However, the main biogeochemical controls that ultimately drove this recovery have yet to be elucidated. Here, we report new carbon and nitrogen isotope and concentration data from the Nanhua Basin (South China), where δ13C values of carbonates (δ13Ccarb) rise from − 7‰ to −1‰ and δ15N values decrease from +5.4‰ to +2.3‰. These trends are proposed to arise from a new equilibrium in the C and N cycles where primary production overcomes secondary production as the main source of organic matter in sediments. The enhanced primary production is supported by the coexisting Raman spectral data, which reveal a systematic difference in kerogen structure between depositional environments. Our new observations point to the variable dominance of distinct microbial communities in the late Ediacaran ecosystems, and suggest that blooms of oxygenic phototrophs modulated the recovery from the most negative δ13Ccarb excursion in Earth history

    Self-similar patterns from abiotic decarboxylation metabolism through chemically oscillating reactions: a prebiotic model for the origin of life

    Get PDF
    The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars

    Minimal biomass deposition in banded iron formations inferred from organic matter and clay relationships

    Get PDF
    The cycling of iron and organic matter (OM) is thought to have been a major biogeochemical cycle in the early ferruginous oceans which contributed to the deposition of banded iron formations (BIF). However, BIF are deficient in OM, which is postulated to be the result of near-complete oxidation of OM during iron reduction. We test this idea by documenting the prevalence of OM in clays within BIF and clays in shales associated with BIF. We find in shales >80% of OM occurs in clays, butPeer reviewe

    Chemically oscillating reactions during the diagenetic formation of Ediacaran Siliceous and Carbonate Botryoids

    Get PDF
    Chemically oscillating reactions are abiotic reactions that produce characteristic, periodic patterns during the oxidation of carboxylic acids. They have been proposed to occur during the early diagenesis of sediments that contain organic matter and to partly explain the patterns of some enigmatic spheroids in malachite, phosphorite, jasper chert, and stromatolitic chert from the rock record. In this work, circularly concentric self-similar patterns are shown to form in new chemically oscillating reaction experiments with variable mixtures of carboxylic acids and colloidal silica. This is carried out to best simulate in vitro the diagenetic formation of botryoidal quartz and carbonate in two Ediacaran-age geological formations deposited after the Marinoan–Nantuo snowball Earth event in South China. Experiments performed with alkaline colloidal silica (pH of 12) show that this compound directly participates in pattern formation, whereas those with humic acid particles did not. These experiments are particularly noteworthy since they show that pattern formation is not inhibited by strong pH gradients, since the classical Belousov–Zhabotinsky reaction occurs in solution with a pH around 2. Our documentation of hundreds of classical Belousov–Zhabotinsky experiments yields a number of self-similar patterns akin to those in concretionary structures after the Marinoan–Nantuo snowball Earth event. Morphological, compositional, and size dimensional comparisons are thus established between patterns from these experiments and in botryoidal quartz and carbonate from the Doushantuo and Denying formations. Selected specimens exhibit circularly concentric layers and disseminations of organic matter in quartz and carbonate, which also occurs in association with sub-micron-size pyrite and sub-millimetre iron oxides within these patterns. X-ray absorption near edge structure (XANES) analyses of organic matter extracted from dolomite concretions in slightly younger, early Cambrian Niutitang Formation reveal the presence of carboxylic and N-bearing molecular functional groups. Such mineral assemblages, patterns, and compositions collectively suggest that diagenetic redox reactions take place during the abiotic decay of biomass, and that they involve Fe, sulphate, and organic matter, similarly to the pattern-forming experiments. It is concluded that chemically oscillating reactions are at least partly responsible for the formation of diagenetic siliceous spheroids and concretionary carbonate, which can relate to various other persistent problems in Earth and planetary sciences

    Widespread occurrences of variably crystalline C-13-depleted graphitic carbon in banded iron formations

    Get PDF
    Almost all evidence for the oldest traces of life on Earth rely on particles of graphitic carbon preserved in rocks of sedimentary protolith. Yet, the source of carbon in such ancient graphite is debated, as it could possibly be non-biological and/or non-indigenous in origin. Here we describe the co-occurrence of poorly crystalline and crystalline varieties of graphitic carbon with apatite in ten different and variably metamorphosed banded iron formations (BIF) ranging in age from 1,800 to >3,800 Myr. In Neoarchean to Palaeoproterozoic BIF subjected to low-grade metamorphism, C-13-depleted graphitic carbon occurs as inclusions in apatite, and carbonate and arguably represents the remineralisation of syngenetic biomass. In BIF subjected to high-grade metamorphism, C-13-depleted graphite co-occurs with poorly crystalline graphite (PCG), as well as apatite, carbonate, pyrite, amphibole and greenalite. Retrograde minerals such as greenalite, and veins cross-cutting magnetite layers contain PCG. Crystalline graphite can occur with apatite and orthopyroxene, and sometimes it has PCG coatings. Crystalline graphite is interpreted to represent the metamorphosed product of syngenetic organic carbon deposited in BIF, while poorly crystalline graphite was precipitated from C-O-H fluids partially sourced from the syngenetic carbon, along with fluid-deposited apatite and carbonate. The isotopic signature of the graphitic carbon and the distribution of fluid-deposited graphite in highly metamorphosed BIF is consistent with carbon in the fluids being derived from the thermal cracking of syngenetic biomass deposited in BIF, but, extraneous sources of carbon cannot be ruled out as a source for PCG. The results here show that apatite + graphite is a common mineral assemblage in metamorphosed BIF. The mode of formation of this assemblage is, however, variable, which has important implications for the timing of life's emergence on Earth. (C) 2019 Elsevier B.V. All rights reserved.Peer reviewe

    Organic remains in late Palaeoproterozoic granular iron formations and implications for the origin of granules

    Get PDF
    Toward the end of the Palaeoproterozoic era, over 109 billion tonnes of banded (BIF) and granular (GIF) iron formations were deposited on continental platforms. Granules in iron formations are typically sub-spherical structures 0.2 to 10 mm in size, whereas concretions are >10 mm. Both types of spheroids are preserved throughout the sedimentological record. Their formation has typically been interpreted to originate from reworked Fe-rich sediments in high-energy, wave-agitated, shallow-marine environments. New evidence from six different late Palaeoproterozoic granular iron formations (GIF), however, suggests that some granules are the result of diagenetic reactions, in addition to other features driven by microbial processes and mechanical movements. Characteristic coarse grain interiors and septarian-type cracks inside granules, akin to those features in decimetre- to meter-size concretions, are interpreted as desiccation features from hydrated diagenetic environments where sulphate and/ or ferric iron were reduced while organic matter (OM) was oxidised inside granules. Those granules derived from sulphate reduction preserve diagenetic pyrite rims, whereas those formed via ferric iron reduction preserve diagenetic magnetite along their rims. Other diagenetic minerals including apatite mixed with OM, and various carbonate phases are commonly preserved within granules. Combined with systematically 13C-depleted carbonate, these diagenetic mineral assemblages point to the oxidative decay of OM as a major process involved in the formation of granules. Spheroidal equidistant haematite laminations surround some granules and contain apatite associated with carbonate, OM, and ferric-ferrous silicates, and oxides that further suggest these structures were not shaped by wave-action along sediment-water interfaces, but rather by chemical wave fronts and biomineralisation. Our results demonstrate that the formation mechanisms of GIF also involve microbial activity and chemically-oscillating reactions. As such, granules have excellent potential to be considered as promising biosignatures for studying Precambrian biogeochemistry, as well as astrobiology

    Evidence for early life in Earth’s oldest hydrothermal vent precipitates

    Get PDF
    Although it is not known when or where life on Earth began, some of the earliest habitable environments may have been submarine-hydrothermal vents. Here we describe putative fossilized microorganisms that are at least 3,770 million and possibly 4,280 million years old in ferruginous sedimentary rocks, interpreted as seafloor-hydrothermal vent-related precipitates, from the Nuvvuagittuq belt in Quebec, Canada. These structures occur as micrometre-scale haematite tubes and filaments with morphologies and mineral assemblages similar to those of filamentous microorganisms from modern hydrothermal vent precipitates and analogous microfossils in younger rocks. The Nuvvuagittuq rocks contain isotopically light carbon in carbonate and carbonaceous material, which occurs as graphitic inclusions in diagenetic carbonate rosettes, apatite blades intergrown among carbonate rosettes and magnetite–haematite granules, and is associated with carbonate in direct contact with the putative microfossils. Collectively, these observations are consistent with an oxidized biomass and provide evidence for biological activity in submarine-hydrothermal environments more than 3,770 million years ago

    Chemically Oscillating Reactions as a New Model for the Formation of Mineral Patterns in Agate Geodes and Concretions

    No full text
    Agate geodes contain spheroidal patterns characterized by spectacularly coloured and circularly concentric laminations with radially aligned quartz crystals, yet the origin of these geometric patterns has remained enigmatic. Here, detailed comparisons are documented between these kinds of patterns in a selection of geodes and concretions and those produced by abiotic chemically oscillating reactions. We find strikingly comparable self-similar, fractal patterns in both natural volcanogenic geodes and sedimentary concretions as well as in these benchtop experiments. In addition, the mineralogical composition of patterns and associated organic matter point to the oxidation of organic compounds in both geodes and concretions. This process occurred during diagenetic or supergene alteration, and it is consistent with spontaneous and abiotic chemically oscillating reactions. It is concluded that the oxidation of organic acids was involved in the formation of these patterns and that these rocks indicate oxidation–reduction reactions involving organic carbon, which itself may be abiotic or biological in origin. Hence, agate geodes and concretions represent the abiotic biosignatures of possible biological origin in volcanic and sedimentary rocks

    Biogeochemical cycling of nitrogen on the early Earth.

    No full text
    8 pagesInternational audienceVariations in the nitrogen isotope composition of ancient organic matter and associated sediments provide clues for the early evolution of Earth's atmosphere-ocean-biosphere system. In particular, large isotopic variations have been linked to the protracted oxygenation of Earth's atmosphere during the Precambrian. Important problems being investigated include the nature of the variations observed globally at specific times in Earth's history and the degree of preservation of ancient nitrogen biogeochemical signatures during diagenesis and metamorphism. Interpreting these records in Archean sedimentary environments and their possible implications for the evolution of Earth's early atmosphere, ocean, and life is challenging
    corecore