68 research outputs found

    Profiling of microorganism-binding serum antibody specificities in professional athletes

    Get PDF
    The goal of this work was to elucidate similarities between microorganisms from the perspective of the humoral immune system reactivity in professional athletes. The reactivity of serum IgG of 14 young, individuals was analyzed to 23 selected microorganisms as antigens by use of the in house ELISA. Serum IgM and IgA reactivity was also analyzed and a control group of sex and age matched individuals was used for comparison. The obtained absorbance levels were used as a string of values to correlate the reactivity to different microorganisms. IgM was found to be the most cross reactive antibody class, Pearson’s r = 0.7–0.92, for very distant bacterial species such as Lactobacillus and E. coli.High correlation in IgG levels was found for Gammaproteobacteria and LPS (from E. coli) (r = 0.77 for LPS vs. P. aeruginosa to r = 0.98 for LPS vs. E.coli), whereas this correlation was lower in the control group (r = 0.49 for LPS vs. P. aeruginosa to r = 0.66 for LPS vs. E.coli). The correlation was also analyzed between total IgG and IgG subclasses specific for the same microorganism, and IgG2 was identified as the main subclass recognising different microorganisms, as well as recognising LPS. Upon correlation of IgG with IgA for the same microorganism absence of or negative correlation was found between bacteria-specific IgA and IgG in case of Lactobacillus and Staphylococcusgeni, whereas correlation was absent or positive for Candida albicans, Enterococcusfaecalis,Streptococcus species tested in professional athletes. Opposite results were obtained for the control group. Outlined here is a simple experimental procedure and data analysis which yields functional significance and which can be used for determining the similarities between microorganisms from the aspect of the humoral immune system, for determining the main IgG subclass involved in an immune response as well as for the analysis of different target populations

    Quantum Hall Effects in Graphene-Based Two-Dimensional Electron Systems

    Full text link
    In this article we review the quantum Hall physics of graphene based two-dimensional electron systems, with a special focus on recent experimental and theoretical developments. We explain why graphene and bilayer graphene can be viewed respectively as J=1 and J=2 chiral two-dimensional electron gases (C2DEGs), and why this property frames their quantum Hall physics. The current status of experimental and theoretical work on the role of electron-electron interactions is reviewed at length with an emphasis on unresolved issues in the field, including assessing the role of disorder in current experimental results. Special attention is given to the interesting low magnetic field limit and to the relationship between quantum Hall effects and the spontaneous anomalous Hall effects that might occur in bilayer graphene systems in the absence of a magnetic field

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System

    Get PDF
    The IRG system of IFNγ-inducible GTPases constitutes a powerful resistance mechanism in mice against Toxoplasma gondii and two Chlamydia strains but not against many other bacteria and protozoa. Why only T. gondii and Chlamydia? We hypothesized that unusual features of the entry mechanisms and intracellular replicative niches of these two organisms, neither of which resembles a phagosome, might hint at a common principle. We examined another unicellular parasitic organism of mammals, member of an early-diverging group of Fungi, that bypasses the phagocytic mechanism when it enters the host cell: the microsporidian Encephalitozoon cuniculi. Consistent with the known susceptibility of IFNγ-deficient mice to E. cuniculi infection, we found that IFNγ treatment suppresses meront development and spore formation in mouse fibroblasts in vitro, and that this effect is mediated by IRG proteins. The process resembles that previously described in T. gondii and Chlamydia resistance. Effector (GKS subfamily) IRG proteins accumulate at the parasitophorous vacuole of E. cuniculi and the meronts are eliminated. The suppression of E. cuniculi growth by IFNγ is completely reversed in cells lacking regulatory (GMS subfamily) IRG proteins, cells that effectively lack all IRG function. In addition IFNγ-induced cells infected with E. cuniculi die by necrosis as previously shown for IFNγ-induced cells resisting T. gondii infection. Thus the IRG resistance system provides cell-autonomous immunity to specific parasites from three kingdoms of life: protozoa, bacteria and fungi. The phylogenetic divergence of the three organisms whose vacuoles are now known to be involved in IRG-mediated immunity and the non-phagosomal character of the vacuoles themselves strongly suggests that the IRG system is triggered not by the presence of specific parasite components but rather by absence of specific host components on the vacuolar membrane.Grants from the Deutsche Forschungsgemeinschaft: SFB635, 670, 680, SPP1399

    Fractional Quantum Hall Effects in Graphene and Its Bilayer

    Full text link
    Single-layer and Bilayer of graphene are new classes of two-dimensional electron systems with unconventional band structures and valley degrees of freedom. The ground states and excitations in the integer and fractional quantum Hall regimes are investigated on torus and spherical geometries with the use of the density matrix renormalization group (DMRG) method. At nonzero Landau level indices, the ground states at effective filling factors 1, 1/3, 2/3 and 2/5 are valley polarized both in single-layer and bilayer graphenes. We examine the elementary charge excitations which could couple with the valley degrees of freedom (so called valley skyrmions). The excitation gaps are calculated and extrapolated to the thermodynamic limit. The largest excitation gap at effective filling 1/3 is obtained in bilayer graphene, which is a good candidate for experimental observation of fractional quantum Hall effect.Comment: 8 pages, 7 figures, submitted to J. Phys. Soc. Jp

    Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection

    Get PDF
    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse.Deutscher Akademischer Austausch Dienst (DAAD); International Graduate School in Development Health and Disease (IGS-DHD); Deutsche For-schungsgemeinschaft (SFBs 635, 670, 680); Max-Planck-Gesellschaft (Max Planck Fellowship)

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    Ovarian cancer stem cells: still an elusive entity?

    Full text link
    corecore