66 research outputs found

    Geometrical Dependence on the Onset of Surface Plasmon Polaritons in THz Grid Metasurfaces

    Get PDF
    Abstract The transmission response of metallo-dielectric grid metasurfaces is experimentally investigated through Terahertz Time Domain Spectroscopy and the corresponding effective dielectric function is retrieved. Using a lumped element model we can determine the dependence of the effective plasma frequency (the transition frequency) on the metasurface filling factor F. The change of the transition frequency vs. F spans over one order of magnitude and sets the threshold between the metamaterial (homogeneous) and the photonic crystal (diffraction-like) regime, ruling the onset of two different Surface Plasmon Polaritons, spoof and high order. Field symmetry and spatial extension of such excitations are investigated for the possible applications of THz grid metasurfaces in bio- and chemical sensing and sub-wavelength imaging

    Encoded-enhancement of THZ metasurface figure of merit for label-free sensing

    Get PDF
    We describe an experimental strategy for the use of Terahertz (THz) metasurfaces as a platform for label-free wide range detection of the dielectric function in biological fluids. Specifically, we propose a metagrid (MG), opportunely infiltrated with a fluid and then capped, as the reference structure for sensing experiments with a high reproducibility character. By combining experiments and full-wave simulations of the transmission T of such a structure, we introduce a reliable set up where the volume of the involved analyte in each unit cell is precisely determined. The unavoidable decrease in the quality factor of the intrinsic resonances due to the lossy fluid and cap layer is circumvented using an appropriate transformation of T that amplifies the change in the MG intrinsic resonances, improving in such a way the sensor sensitivity to values close to the experimental limits. The transformed signal features delta-like peaks enabling an easy readout of frequency positions at resonances

    Tensor voting for robust color edge detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to robust edge detection in color images. In this case, three tensors are used to encode local CIELAB color channels and edginess, while the voting process propagates both color and edginess by applying perception-based rules. Unlike the classical tensor voting, the second method considers the context in the voting process. Recall, discriminability, precision, false alarm rejection and robustness measurements with respect to three different ground-truths have been used to compare the proposed methods with the state-of-the-art. Experimental results show that the proposed methods are competitive, especially in robustness. Moreover, these experiments evidence the difficulty of proposing an edge detector with a perfect performance with respect to all features and fields of application.This research has been supported by the Swedish Research Council under the project VR 2012-3512

    Bayesian Genetic Programming for Edge Detection

    Get PDF
    In edge detection, designing new techniques to combine local features is expected to improve detection performance. However, how to effectively design combination techniques remains an open issue. In this study, an automatic design approach is proposed to combine local edge features using Bayesian programs (models) evolved by genetic programming (GP). Multivariate density is used to estimate prior probabilities for edge points and non-edge points. Bayesian programs evolved by GP are used to construct composite features after estimating the relevant multivariate density. The results show that GP has the ability to effectively evolve Bayesian programs. These evolved programs have higher detection accuracy than the combination of local features by directly using the multivariate density (of these local features) in a simple Bayesian model. From evolved Bayesian programs, the proposed GP system has potential to effectively select features to construct Bayesian programs for performance improvement

    Brixsino High-Flux Dual X-Ray and THz Radiation Source Based on Energy Recovery Linacs

    Get PDF
    We present the conceptual design of a compact light source named BriXSinO. BriXSinO was born as demonstrator of the Marix project, but it is also a dual high flux radiation source Inverse Compton Source (ICS) of X-ray and Free-Electron Laser of THz spectral range radiation conceived for medical applications and general applied research. The accelerator is a push-pull CW-SC Energy Recovery Linac (ERL) based on superconducting cavities technology and allows to sustain MW-class beam power with almost just one hundred kW active power dissipation/consumption. ICS line produces 33 keV monochromatic X-Rays via Compton scattering of the electron beam with a laser system in Fabry-PĂ©rot cavity at a repetition rate of 100 MHz. The THz FEL oscillator is based on an undulator imbedded in optical cavity and generates THz wavelengths from 15 to 50 micron

    Genetics of intellectual disability in consanguineous families

    No full text
    Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence

    Quantum interference in finite-size mesoscopic rings

    No full text
    The Ginzburg-Landau theory is used to model the order parameter of a finite-size mesoscopic ring to investigate the effects of the onset of screening currents on the transport of incoming ones. The magnetic flux breaks the symmetry of currents between input and output stubs by means of an induced spatial ordering upon diamagnetic and paramagnetic supercurrents circulating in the ring. The distribution of those screening currents drives the interference of incoming/outgoing supercurrents resulting into a sinusoidal variation of resistance as a function of the magnetic flux even if the density of quasiparticles is not modified by the external magnetic field

    Probing the Molecular Dynamics of Aqueous Binary Solutions with THz Time-Domain Ellipsometry

    No full text
    Using a customized time-domain ellipsometer operating in the THz range, the molecular dynamics of a liquid binary solution based on water and isopropyl alcohol (2-propanol) is investigated. The setup is capable of detecting small changes in the optical properties of the mixture within a single measurement. The complex dielectric response of samples with different concentrations is studied through the direct measurement of the ellipsometric parameters. The results are described using an effective Debye model, from which the relaxation parameters associated with different activation energies can be consistently extracted. Significant deviations between experimental data and the theoretical expectations at an intermediate volume percentage of 2-propanol in water are observed and interpreted as produced by competing effects: the creation/destruction of hydrogen bonding on the one hand, and the presence of cluster/aggregation between water and alcohol molecules on the other

    Sensing biological fluids using Resonating Surface Plasmon Polaritons in the THz range

    No full text
    We study the sensitivity of two different metagrids to the presence of biological fluids on the surface. When a THz beam impinges on each metagrid capped with a dielectric substrate, peaks in transmission related to the onset of high order surface plasmon polaritons appear and allow to estimate the properties of a guest fluid filling the partition volume with a very high sensitivity, comparable with record literature values
    • …
    corecore