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Abstract In edge detection, designing new techniques
to combine local features is expected to improve de-

tection performance. However, how to effectively de-

sign combination techniques remains an open issue. In

this study, an automatic design approach is proposed

to combine local edge features using Bayesian programs
(models) evolved by Genetic Programming (GP). Mul-

tivariate density is used to estimate prior probabilities

for edge points and non-edge points. Bayesian programs

evolved by GP are used to construct composite fea-
tures after estimating the relevant multivariate den-

sity. The results show that GP has the ability to ef-

fectively evolve Bayesian programs. These evolved pro-

grams have higher detection accuracy than the combi-

nation of local features by directly using the multivari-
ate density (of these local features) in a simple Bayesian

model. From evolved Bayesian programs, the proposed

GP system has potential to effectively select features to

construct Bayesian programs for performance improve-
ment.

Keywords Genetic Programming · Edge Detection ·

Bayesian Model · Feature Construction

1 Introduction

In order to extract information from an object, an es-

sential job is to distinguish the object from its back-
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ground. Edge detection is a process of detecting dis-
continuous changes between objects and background in

an image [2, 37]. In general, the edges extracted from an

image can be simplified to describe the image content.

Edge detection benefits a wide range of applications,

such as image compression [33], object tracking [35],
and image retrieval [23]. In a grayscale image, an edge

feature for each pixel is a general mathematical formula

of intensity values of pixels in a local area, and it is em-

ployed in the process of marking the pixel as an edge
point or a non-edge point. To extract edge features,

many methods have been proposed [30, 15, 3]. From

human observations, several different solutions might

be considered as true edge maps of one natural image.

Therefore, edge detection is a subjective task. Differ-
ent local edge features have been combined to improve

detection performance [28, 9].

Our previous work [11] has shown that Genetic Pro-

gramming (GP) can be successfully applied to feature
construction by combining basic features and estimat-

ing the distribution of the observations of evolved pro-

grams. The basic edge features come from different prior

domain knowledge (the Gaussian gradient, the normalised

standard deviation, and the histogram gradient). The
constructed GP edge features were significantly better

than the combination from a simple Bayesian model

using a general multivariate normal density [7].

From machine learning [7], different methods, such

as Bayesian techniques, can be applied for combining
basic features. Bayesian techniques have been widely

applied to classification [21]. Since these techniques are

based on applying Bayes’ theorem [7], human experts

can understand the models using the Bayesian tech-
niques. However, there are still existing issues in the

Bayesian techniques, such as how to effectively select

features and design Bayesian models [21]. It is there-
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fore desirable to develop a GP system to automatically

select features and design Bayesian models for perfor-

mance improvement of a Bayesian technique.

The existing work using GP in edge detection mainly

focuses on the construction of low-level edge detectors,

such as approximating one-dimen-sional filters [31], se-

lecting raw pixels [38], and combining image opera-
tors [22]. The work using GP in edge detection for

the construction of low-level edge detectors shows that

GP has potential to effectively evolve good edge detec-

tors [38, 22, 10]. We have conducted initial investigation

of employing GP to evolve Bayesian programs [14]. The
evolved programs have higher detection accuracy than

a simple Bayesian model to combine a set of predefined

basic edge features.

1.1 Goal

The goal of this paper is to investigate automatic high-

level feature construction for edge detection using GP
to evolve Bayesian programs. Here, a high-level feature

means that it is constructed based on some basic fea-

tures and combination techniques with prior domain

knowledge. In our proposed Bayesian GP system [14], a
simple Bayesian model with a general multivariate nor-

mal density was proposed as a function to construct dif-

ferent Bayesian programs. Different from our previous

work [14], this paper further investigate the Bayesian

GP system. The simple Bayesian model can be used as
a terminal as well. How to effectively use the Bayesian

model with a general multivariate normal density in the

GP system is investigated. Specifically, the following re-

search objectives will be investigated.

• Whether there are differences between using all ba-

sic features and randomly selecting a set of features
in a Bayesian function.

• Whether using the simple Bayesian model as a ter-

minal can achieve better performance than using the

Bayesian model as a function.

• Whether the evolved Bayesian programs can be rea-
sonably interpreted.

1.2 Organisation

In the remainder of the paper, Section 2 describes rele-

vant background on edge detection and using GP for

edge detection. Section 3 introduces a Bayesian GP

system further developed from our previous work [14]
to construct high-level features. Section 4 presents the

design of the experiments. After giving the results in

Section 5 with discussions, Section 6 provides further

Fig. 1 General edge detection flow.

discussions. Finally, Section 7 draws conclusions and

suggests future work directions.

2 Background

This section gives background on edge detection and

discusses the existing work using GP for edge detection.

2.1 Edge Detection

Typically, edge detection includes three stages: pre-pro-

cessing, feature extraction and post-processing [30]. A
general process flow for edge detection is shown in Fig. 1.

Given an image I, pre-processing techniques will use I

as input and generate an intermediate result I ′. In the

pre-processing stage, noise and textures will usually be
suppressed with little influence on edges. The second

stage is to extract edge features, including computing

responses on pixels (feature values) and manipulating

features. In the process of response computation, edge

responses, such as image derivatives [5], are employed.
Based on different directional derivatives, a set of fea-

tures R is obtained. Note that it is possible to combine

the pre-processing stage and the response computation

stage together. For example, image Gaussian gradients
include image gradients and Gaussian filtering [5]. In

the process of manipulating edge features, feature selec-

tion [6] and further feature construction [17, 28] might

be used to generate a set of features M . In edge detec-

tion, the process of extracting edge features is perhaps
the most important. In the post-processing stage, mark-

ing edge points, thinning edges, linking broken edge

points, and deleting stand-alone edge points are usu-

ally used. A final binary edge map B is obtained af-
ter finishing post-processing operations. Generally, pre-

processing and post-processing can be routinely applied

to different edge feature extraction techniques.

To measure an edge feature based on ground truth,

the feature is used to obtain final binary edge maps after
applying thresholding techniques and post-processing

techniques. For example, the F -measure technique [28]

has been used to evaluate edge detectors and boundary

detectors. Since common post-processing techniques, such
as thinning operations [26] and non-maximum suppres-

sion [5], can generally follow most feature extraction ap-

proaches, it is also important to evaluate the features
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without non-maximum suppression and other specific

post-processing techniques [29].

2.2 Local Features

A local moving window is usually used to extract edge

features for each pixel. Local features are usually based

on moving windows. The local rotation-invariant fea-

tures used in this paper are introduced as follows.

2.2.1 Image Gaussian Gradient

Differentiation-based techniques are popular in edge fea-

ture extraction. For example, the image derivative [5,
17] and the local histogram derivative [28] have been

used for extracting edge features. Horizontal derivatives

of an image are used to detect vertical edges in the

image. For example, to use a feature to detect verti-

cal edges, the horizontal derivative of a Gaussian filter
is defined in Equation (1), where σ is the parameter

scale of the Gaussian filter, and (u, v) is the position

of a neighbour relative to a centre discriminated pixel.

Equation (2) describes the vertical derivative of a Gaus-
sian filter. Given a direction θ = 0◦ or 90◦, the rela-

tive image derivative Tgg,θ(x, y) is obtained after the

convolution of image I is performed with the deriva-

tive gθ(u, v). Equation (3) describes the image Gaussian

derivative Tgg,θ(x, y). Equation (4) defines the image
Gaussian gradient Tgg. Here, Tgg combines Tgg,0◦(x, y)

and Tgg,90◦(x, y) as a rotation-invariant feature.

g0◦(u, v) = −
u

2πσ4
exp

(

−
u2 + v2

2σ2

)

(1)

g90◦(u, v) = −
v

2πσ4
exp

(

−
u2 + v2

2σ2

)

(2)

Tgg,θ(x, y) = gθ(u, v)⊛ I(x, y) (3)

Tgg(x, y) =
√

T 2

gg,0◦(x, y) + T 2

gg,90◦(x, y) (4)

2.2.2 Image Histogram Gradient

Objects normally have different histograms. Image lo-

cal histogram derivatives have been applied to edge de-

tection [28]. To detect pixel (x, y) as an edge point at

direction θ, the image local histogram derivative around

this pixel is defined in Equation (5). Here, a separate
line with direction θ over pixel (x, y) is used to divide

the pixel’s neighbours in a local area into the left and

right groups. The values of these neighbours are binned.

In bin i, lθ,i is the number of occurrences of the neigh-
bours in the left group, and rθ,i is the number of occur-

rences of the neighbours in the right group. The local

histogram gradient Thg is defined in Equation (6). Note

that hθ(x, y) ≥ 0 and Thg is the sum of hθ(x, y) in a set

of possible directions.

hθ(x, y) =
1

2

∑ (lθ,i − rθ,i)
2

lθ,i + rθ,i
(5)

Thg =
∑

θ

hθ(x, y) (6)

2.2.3 Normalised Standard Deviation

In the literature, the normalised standard deviation is

seldom employed as a feature for edge detection. Gen-

erally, it is used as an the indication of the image qual-

ity [32]. Equation (7) describes the local normalised
standard deviation Tsd(x, y). Here Mean(x, y) is the

mean of the pixel intensities in a local area around

pixel (x, y), and SD(x, y) are the standard deviation

of the pixel intensities in the local area. The local area
is typically a small moving window. Note that image

rotation does not affect Tsd(x, y) because the local area

is rotation-invariant.

Tsd(x, y) =
SD(x, y)

Mean(x, y)
(7)

The notion of edges is the result of common human

experience rather than a formal mathematical defini-

tion [30, 27]. The local features from derivatives include

high responses on non-edge points which are affected

by noise or textures. For instance, Fig. 2 shows the
three different edge features Tgg, Thg and Tsd applied

to an image from the Berkeley Segmentation Dataset

(BSD) [28]. Fig. 2 (b) has problems in area 1 where

it gives inappropriately strong responses on non-edge
points and weak responses on edge points, area 2 where

there is a lot of noise interference, and area 3 where

edge points are not detected. Fig. 2 (c) shows better

responses on the edges in area 1 than Fig. 2 (b), but

has a problem in area 2 of noise interference, and only
includes a few edge points in area 3 with many false

alarms. Fig. 2 (d) also has a problem in area 1 where

it gives too weak responses to the edge points, but is

only weakly affected by noise in area 2, and includes
partial edges in area 3. In order to obtain suitable edge

features for desired edge outputs, a method to extract

good edge features efficiently and effectively is required.

2.3 Related Work on GP for Edge Feature

Construction

The existing limited work in edge detection using GP
mainly focuses on construction of low-level edge fea-

tures. Also, GP has been used to construct composite

edge features.
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Fig. 2 Detected image based on Gaussian gradients Tgg,
histogram gradients Thg and normalised standard deviations
Tsd.

2.3.1 Low-level Edge Feature Construction

In the construction of low-level edge features, raw pixel

values are combined together by a general formula to
indicate whether pixels belong to edge points or non-

edge points.

For example, GP has been used to approximate a

target edge detector based on the responses of the tar-

get edge detector, such as the Sobel edge detector [20,

18] and the Canny edge detector [8]. Also, GP evolved
specific programs to approximate desired outputs from

a set of different one-dimensional step edge signals and

noise [19]. These evolved programs were used to design

one-dimensional filters to extract edge features. Like re-
gression problems, GP is used for approximation of de-

sired outputs, such as outputs of existing detectors or

desired responses on signals. However, the desired out-

puts are obtained based on the understanding of edge

responses. Only limited edge information can be used
to construct edge features when GP is employed to ap-

proximate desired edge responses.

GP has also been used to extract edge features based

on detection accuracy. Edge detection is considered as

a special binary classification. Each pixel is discrimi-
nated as an edge point or a non-edge point. Similar

to the four macros for searching a pixel’s neighbours

suggested by Poli [31], our previous work has employed

search operators to select pixels to construct edge de-

tectors [10, 12]. Pixels in a 13×13 window were selected
to extract edge features by GP using ground truth [38].

64-bit digital circuits as programs were evolved by GP

from artificial images [16]. In [36], morphological oper-

ators erosion and dilation were used as the terminal set
and the detectors evolved by GP classify pixels as edge

points or non-edge points. When GP is used to extract

edge features based on ground truth, the prior domain

knowledge on edges is weak. However, low-level edge

features usually need to be further improved.

2.3.2 Composite Edge Feature Construction

To detect object boundaries, some image operators were
utilised to combine high-level detectors by GP [22]. A

rotation-variant feature evolved by GP in [22] was used

to train a logistic regression classifier with texture gra-

dients. However, only one composite feature (combined
with texture gradients) in [22] was presented to com-

pete with other edge and contour detectors. The vari-

ant feature is based on multiple directions, which leads

to high computational cost. In addition, the GP feature

needs to be combined with other existing approaches to
perform boundary detection. In our previous work [11],

three rotation-invariant basic features have been con-

structed into composite features. The composite fea-

tures constructed by GP have the advantages from the
basic features, and avoided some disadvantages from

them. In [11], the composite features from GP are bet-

ter than the combination of a Bayesian model. How to

effectively combine basic features still needs to be inves-

tigated. In additional, GP was used to design programs
which start at a pixel and then “walk” to find edge

points [4].

3 The Approach

In order to employ existing techniques to combine basic
features into composite features, functions or terminals

based on existing techniques are designed in the pro-

posed GP system. The function set includes functions

implementing a Bayesian model and general algebraic
operators. The terminal set includes not only basic fea-

tures, but also a simple Bayesian model.

3.1 Bayesian Function and Terminal

Edge detection is considered here as a binary classifica-
tion problem. Let j = 0 be the class “non-edge point”,

j = 1 be the class “edge point”, and x be a d-component

vector-valued random variable. Pj is the prior probabil-

ity for the class non-edge point or edge point. Let px|j
be the state-conditional probability density function for
x (given j = 0 or 1 being the true state). The posterior

probability pj|x can be estimated from px|j by Bayesian

inversion (Equation (8)) [7]. Here the conditional prob-

ability density function px|j is estimated by the general
multivariate normal density (see Equation (9)), where,

µ̂j is the d-component sample mean vector for class j,

Σ̂j is the d-by-d sample covariance matrix, |Σ̂j | is its
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determinant and Σ̂−1

j is its inverse, and (x − µ̂j)
T is

the transpose of x− µ̂j . Note that |Σ̂j| might be 0. To

avoid this situation, each diagonal element in Σ̂j has a
very small tolerance value ǫ = 1.0e− 12 added to it.

pj|x =
px|jPj

∑

1

k=0
px|kPk

(8)

px|j =
1

(2π)
d
2 |Σ̂j|

1

2

exp
(

− 1

2
(x − µ̂j)

T Σ̂−1

j (x− µ̂j)
)

(9)

In order to improve the performance of the stan-

dard Bayesian model, a Bayesian function is defined in

Equation (10). Here, s is the function argument, and x

is one of the possible combinations from the basic fea-

tures Tgg, Tsd, and Thg. The function argument s is one
basic feature or a subtree. Since the class edge point is

the major class in edge detection, the output is a one-

dimensional variable based on the posterior probability

of the class edge point. In edge detection, multiple out-
puts are not necessary, but the function can support

multiple outputs, which is a potential future applica-

tion to multiple classification problems.

b1|x(s) =
p1|x,s

∑1

j=0
pj|x,s

(10)

The range of the output for the function b1|x(s) is

from 0 to 1, and a composite feature from the sim-
ple Bayesian model [7] can be described as b1|x1

(Thg),

where x1 = {Tgg, Tsd}. Note that the argument s of

the Bayesian function b1|x can be the output of another

b1|x, such as b1|x(b1|x(s)).

Therefore, the Bayesian function has three behaviours:
(1) selecting basic features; (2) combining basic features

and s (possibly as an intermediate combination); and

(3) giving edge responses after estimating the relevant

multivariate normal density.
In order to check whether the simple Bayesian model

as a terminal is good to combine basic edge features,

b1|x1
(Thg) is also considered as a terminal. Here xbayes

indicates b1|x1
(Thg) used as a terminal. Since xbayes

combines different basic edge features, the GP system
allows a tree only consisting of a single terminal, e.g.,

xbayes (the simple Bayesian model) as a complete pro-

gram.

3.1.1 General Algebraic Operators

In order to enrich the evolved Bayesian programs, or-

dinary algebraic operators need to be added into the

function set for constructing composite features. How-

ever, the constructed composite features are expected
to represent soft edge maps. A sparse and large range

of the values of a constructed feature is not suitable to

represent soft edge maps. Our previous work [13] has

addressed this problem. Also, it is found that directly

using observations of evolved programs with normal al-

gebraic operators was not good to construct soft edge

maps [11]. The transformation by a function used in the

Bayesian GP system requires the mapped values to be
located in a suitable range. In general, a feature, which

is used to represent soft edge maps, is normalised from

0 to 1. In the simple Bayesian model, the output of a

Bayesian function or xbayes is from 0 to 1. All opera-
tions in the Bayesian GP system are required to map

their inputs into the space from 0 to 1.

For linear operations, two general algebraic opera-

tors {⊕,⊖} are added into the function set. The opera-

tion of ⊕ is defined in Equation (11), and the operation

of ⊖ is defined in Equation (12). Here, sa and sb are the

arguments of the operators ⊕ and ⊖, and the operator
⊖ is the absolute value of difference of sa and sb. The

ranges of sa and sb are from 0 to 1, so the range of the

outputs of both operators is also from 0 to 1.

sa ⊕ sb =
sa + sb

2
(11)

sa ⊖ sb = |sa − sb| (12)

Non-linear general algebraic operators could be used

in the function set. Since this paper only focuses on

the Bayesian model, the application of using different
general algebraic operators will be investigated in the

future work.

3.2 The Other Terminals

The basic features are considered as terminals and they

are normalised from 0 to 1. Note that random constants

are not included in the terminal set because a Bayesian

program estimates the relevant multivariate density to
construct a composite feature, rather than directly us-

ing its observations as a feature. Also, the outputs for

all operations in the GP system are located in the range

from 0 to 1. The operator ⊕ will automatically adjust

the scales for its input (such as Equation (11)) so that
its output is still located in the range from 0 to 1.

3.3 Fitness Function

From the set of terminals and functions, the range of
outputs of a program is from 0 to 1, which is directly

considered as the value of a composite feature. The aim

of the new constructed features is to detect as many

true edge points as possible, so the fitness function Fit

is defined in Equation (13). Here, recall prec is the num-

ber of pixels on the edges correctly detected as a pro-

portion of the total number of pixels on the edges, and
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specificity pspe is the number of pixels not on the edges

correctly detected as a proportion of the total number

of pixels not on the edges. Recall prec and specificity

pspe are calculated when a threshold is used to discrim-

inate outputs of a program as edge points or non-edge
points.

Fit =
2precpspe
prec + pspe

(13)

Since there are no random constants in the termi-

nal set and the range of observations of evolved pro-
grams is restricted from 0 to 1, multiple thresholds are

used to find the maximum of Fit. Here, only three

thresholds are employed to find the maximum value

of Fit as the fitness for the relevant program, aim-
ing at evolving programs with high contrast edge re-

sponses. The three thresholds are 0.25, 0.5 and 0.75.

In order to check whether three thresholds are enough

for evaluating evolved programs, 30 thresholds ( i
31
, i =

1, 2, . . . , 30) are also used to find maximum Fit. To dis-
tinguish the two different settings on Fit, Fit3 indicates

Fit with the three thresholds, and Fit30 indicates Fit

with the 30 thresholds.

Different from our previous work [14], the Bayesian
function is considered not only a function node, but

also a terminal node in the Bayesian GP system. Also,

Fit is allowed to use different numbers of thresholds.

To further investigate the Bayesian function, there are

different settings for the function set and the terminal
set in the GP system. The details of these settings are

given in the next section.

4 Experiment Design

We now describe the benchmark image dataset used in

this paper, also give the settings for the experiments.

4.1 Image Datasets

A natural image dataset, namely the Berkeley Segmen-
tation Dataset (BSD) [28], is employed for edge detec-

tion. Each image in the BSD dataset has 481 × 321

pixels and its own ground truth from different human

observations. The ground truth are combined from five

to ten persons as graylevel images for fairness of judge-
ment of edges. This dataset has been popularly used

for boundary detection [24] and image segmentation [1].

The training dataset and the test dataset are separated.

There are 200 images in the training dataset and 100
different images in the test dataset. Fig. 3 shows six im-

ages from the training dataset and their ground truth.

Note that the widths of some true edges are more than

Table 1 Settings for terminals and functions in the Bayesian
GP system.

Setting Terminals Functions

Bayesian
Function

Setbf,rand {x} {b1|x,⊕,⊖}
Setbf,all {x} {b1|xall

,⊕,⊖}

Bayesian
Terminal

Setbt {x, xbayes} {⊕,⊖}
Setbt,all {x, xbayes} {b1|xall

,⊕,⊖}
Setbt,rand {x, xbayes} {b1|x,⊕,⊖}

Full Set Setfull {x, xbayes} {b1|x, b1|xall
,⊕,⊖}

one pixel because of the combinations of several human

observations. The pixels with graylevel 0 (dark) in the

ground truth are non-edge points, and the others are
edge points. Pixels from the training images are sam-

pled as training dataset, which is the same as in [11].

The settings of the three basic features are the same as

in [11] as well.

The true edges in the BSD dataset come from hu-
man segmentation results, they are more closer for bound-

ary detection, and not exact for edge detection. How-

ever, boundaries are usually extracted based on the

edges detected by an edge detector [30, 27]. The edges

detected by an edge detection algorithm are affected the
performance of detected boundaries. One way in [34]

has been proposed to evaluate edge detection through

boundary detection. Also, following in the suggestion

of directly evaluating edge features in [29], we directly
use the ground truth as the desired outputs to do the

performance evaluation on extracted edge features.

4.2 Experiment Settings

Here, xall indicates that all basic features (Tgg, Tsd and

Thg) are used in the terminal set. Also, b1|xall
indicates

that the Bayesian function always includes all basic fea-

tures, and b1|x indicates that the Bayesian function ran-

domly selects one of all combinations of the basic fea-

tures. In order to investigate the influence of different
terminals and functions, different settings for the ter-

minal and function sets are listed in Table 1.

Firstly, the Bayesian functions are investigated. Set-

ting Setbf,rand automatically selects basic features to

construct composite features. Setting Setbf,all restricts

that all basic features must be included in a Bayesian
function. The purpose for different settings on Bayesian

functions is to find the difference between a large space

(using b1|x to include possible combinations of basic fea-

tures) and a narrow space (must use all basic features)
for feature construction. Secondly, three settings Setbt,

Setbt,all and Setbt,rand are used to investigate the rela-

tionship between the terminal xbayes and the functions
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Fig. 3 Six example training images from the BSD dataset and their ground truth.

b1|x and b1|xall
. Lastly, a full set of terminals and func-

tions is given in setting Setfull.

The parameter values for GP are: population size

50; maximum generations 50; maximum depth (of a
program) 5, probabilities for mutation 0.15, crossover

0.80 and elitism (reproduction) 0.05. These values are

chosen based on common settings and initial experi-

ments [10]. Note that a Bayesian program has some

ability to combine the basic features after estimating
sample means and standard distributions in the pro-

gram. A larger population and a larger number of gen-

erations are not necessarily required.

Each experiment is repeated 30 independent runs.

Here, the test performance employs the F-measure tech-

nique [28]. The F-measure technique combines recall

prec and precision ppre, and it is defined in Equation (14).
Here, precision ppre is the number of pixels on the edges

correctly detected as a proportion of the total number

of pixels detected as edge points, and α is a factor from

0 to 1. α is usually set to 0.5 [28, 6], which is also used

in this paper. Based on thresholds k
52
, k = 1, 2, . . . , 51,

the maximum Fmax of F values is considered as the test

performance of a constructed feature.

F =
precppre

αprec + (1− α)ppre
(14)

5 Results

This section provides experiment results with discus-

sions. The results from Fit3 will be given, then the

results are compared with existing techniques. A com-

parison between Fit3 (three thresholds) and Fit30 (30

thresholds) will be conducted. After showing detected
images from Fit3 and Fit30, an example evolved Bayesian

program will be interpreted.

5.1 Overall Results From Fit3

Table 2 gives the means, standard deviations (s.d.),

the maximum (“Max”), and the minimum (“Min”) of

Fmax values of the evolved programs for the six set-

tings when fitness function Fit3 is used. The “t -test”

column reports the p-values obtained from the compar-
isons between the relevant results (first column as the

first group) and the results from Setbf,rand (as the sec-

ond group) by using two-sample t -tests; and “MWW”

reports the p-values obtained from the comparisons be-
tween the relevant results and the results from Setbf,rand
by using Mann-Whitney-Wilcoxon tests [25].

From an overall view, setting Setbf,rand has the high-
est mean and the maximum Fmax. It seems that set-

ting Setbf,rand has the best test performance on the

BSD test images. In regards of the p-values from the
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Table 2 Test performance Fmax for the six settings using fitness function Fit3 on the BSD test image dataset.

Setting Mean ± s.d. Max Min t-test MWW
Setbf,rand 0.5591 ± 0.0150 0.5847 0.5199
Setbf,all 0.5423 ± 0.0053 0.5504 0.5349 0.0000 ↓ 0.0000 ↓
Setbt 0.5391 ± 0.0000 0.5391 0.5391 0.0000 ↓ 0.0000 ↓

Setbt,all 0.5381 ± 0.0137 0.5664 0.5102 0.0000 ↓ 0.0000 ↓
Setbt,rand 0.5513 ± 0.0107 0.5733 0.5277 0.0278 ↓ 0.0543
Setfull 0.5513 ± 0.0181 0.5841 0.5102 0.0798 0.0603

bf,rand bf,all bt bt,all bt,rand full

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Fig. 4 Boxplots for the Fmax values of the results (30 repli-
cations) from the six settings using fitness function Fit3 on
the 100 BSD test images.

t -tests, the results from Setbf,rand are significantly bet-

ter than the results from the other settings, except for
Setfull. From the Mann-Whitney-Wilcoxon tests, the

results from Setbf,rand are also significantly better than

the results from Setbf,all, Setbt and Setbt,all. Since only

settings Setbf,rand, Setfull and Setbt,rand include b1|x, it
seems that b1|x is important to construct high-level fea-

tures for performance improvement when fitness func-

tion Fit3 is used.

Fig. 4 reveals the Fmax values of the results from

the six settings using Fit3. Here the box labels are the
indices of the six settings, and each box represents the

relevant setting. From these boxplots, the results from

Setbt are the same. From Fig. 4 and Table 2, a few

evolved programs from settings Setbf,rand, Setbt,all and
Setfull have very bad test performance, and their Fmax

values are less than 0.52. From an overall view, all set-

tings, expect for Setbt, have at least half of their evolved

programs with Fmax values larger than 0.54. From our

previous work in [11], the highest Fmax among the three
basic features is 0.5434, and a simple Bayesian method

has Fmax = 0.5302, which is obviously lower than most

of the evolved programs from the six settings here,

except for Setbt. Therefore, GP can effectively evolve
Bayesian programs to improve detection performance

when fitness function Fit only uses the three thresh-

olds to find the maximum value.

5.1.1 Bayesian Function

From the comparison between Setbf,rand (including b1|x)

and Setbf,all (including b1|xall
), the latter is significantly

worse. If using Fit3, the Bayesian program including all

three basic features is not good to find good Bayesian
programs. From the boxplots in Fig. 4, the test perfor-

mances of the evolved programs from Setbf,all are lo-

cated in a narrow range. However, the test performance

of the evolved programs from Setbf,rand spreads over a
larger range. A reason is that function b1|xall

always

includes the three basic features. After estimating an

evolved program including b1|xall
, the test performance

is strongly affected by the combination of three basic

features (as a Bayesian model). Note that fitness func-
tion Fit3 only uses three thresholds to find the max-

imum value, and a Bayesian model with three basic

features has high contrast responses for edge points.

However, function b1|x randomly selects basic features,
it is possible that only one basic feature is selected

and the evolved program has high test performance.

Since the combination of three basic features using b1|x
are varied and the evolved programs from using b1|xall

always include all basic features, an evolved program
from using function b1|x may have lower Fmax than the

evolved programs from using function b1|xall
. From the

minimum value of test performance Fmax in Table 2

and Fig. 4, a bad evolved program exists in setting
Setbf,rand, but there are no outliers in setting Setbf,all.

Therefore, when Fit only uses the three thresholds
to find the maximum value as the fitness of an evolved

program, the evolved program with b1|xall
is strongly

connected to the combination of all basic features and

the test performance is located in a stable range; but

evolved programs with b1|x have flexible structures to
combine basic features, which brings good test perfor-

mance on some evolved programs in most cases, at the

same time, leads to bad test performance on a few

evolved programs.

5.1.2 Bayesian Terminal

When xbayes is added into the terminal set, all evolved

programs from Setbt using Fit3 are equal to the single
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Table 3 Comparison between the results from Setbf,rand

using Fit3, image Gaussian gradients Tgg, normalised stan-
dard deviations Tsd, histogram gradients Thg, Sobel edge de-
tector and the simple Bayesian terminal xbayes on the 100
BSD test images.

Fmax p-value
Setbf,rand 0.5591 ± 0.0150

Tgg 0.5153 0.000 ↓
Tsd 0.4968 0.000 ↓
Thg 0.5434 0.000 ↓
Sobel 0.4832 0.000 ↓
xbayes 0.5391 0.000 ↓

node tree xbayes. It seems that Fit3 could not find any

better combination from xbayes and the three basic fea-

tures without using Bayesian functions, compared with

xbayes. Note that the test performance Fmax on xbayes

is a bit higher than the simple Bayesian model in [11].

The change is caused by xbayes adding tolerance ǫ in

Σ̂j .

After adding Bayesian functions, the results from
Setbt,all are similar to the results from Setbf,all, and the

results from Setbt,rand are similar to the results from

Setbf,rand. It is surprising that there are two evolved

programs from Setbf,all with Fmax values less than 0.52.
In Setbf,all, b1|xall

and xbayes include the three basic

features, but there are still two programs with bad test

performance. From the boxplots in Fig. 4, the terminal

xbayes might be not good for constructing high-level fea-

tures when fitness function Fit3 is used. This suggests
that directly combining the simple Bayesian model with

all basic features might be not good for performance

improvement.

5.1.3 Combination

When all functions and terminals are added into the GP
system, namely using Setfull, the results from Setfull
are not significantly different from the results from set-

ting Setbf,rand. It seems that adding xbayes and b1|xall

in setting Setbf,rand does not affect the evolved pro-

grams when Fit3 is used. Although the search space
for candidate solutions from Setfull is larger than the

space from Setbf,rand, GP can still effectively discover

good programs to construct high-level features.

5.2 Setbf,rand using Fit3 vs Existing Techniques

Table 3 presents the comparisons between the results

from Setbf,rand using Fit3 and the results from Tgg, Tsd,
Thg, the Sobel edge detector, and xbayes. The p-values

are obtained from the comparison between the relevant

results (first row as the first group) and the results from
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Fig. 5 Fmax values for the features constructed by the
evolved 30 programs from GP using Setbf,rand and Fit3.

Setbf,rand using Fit3 (as the second group) when one-
sample t -tests are used. In additional, the 95% confi-

dence interval (based on the t -test) for the evolved pro-

grams from Setbf,rand is (0.5533, 0.5648). These results

show that the features constructed by GP significantly
improve the detection performance. However, the Fmax

value from xbayes is lower than the basic feature Thg, so

it seems that the simple combination does not improve

the detection performance (Fmax). Therefore, GP is ef-

fective for automatic construction of new features, and
improves the performance of using the Bayesian model

to combine basic edge features for edge detection.

In order to check the details of the performance on

all evolved programs, Fig. 5 gives the relevant Fmax val-

ues for all 30 evolved Bayesian programs from Setbf,rand
with Fit3. Most of the evolved Bayesian programs have
higher Fmax than the best basic feature Thg, and most

of the evolved programs obtain good performance. How-

ever, the constructed features from three evolved pro-

grams are worse than Thg (with Fmax). The lowest Fmax

value of the constructed feature from the worst evolved

program is only 0.52. How to improve the performance

on the worst evolved program will be a future work.

5.2.1 Recall and Precision of an Evolved Program

Fig. 6 shows different values of recall and precision for
Tgg, Tsd, Thg, xbayes, and a program evolved by GP

(with Fmax = 0.5847). Here, “@” is the position for the

Fmax. From the different thresholds, it is clear that the

evolved program has higher precision than the others
when recall is not too low. For Tgg, recall is high but

precision is too low, and precision is high but recall is

too low.

One interesting observation from Fig. 6 is that xbayes

has a narrow range for recall and precision. A reason

for this phenomenon is that the Bayesian Equation (8)
gives very low probabilities for most non-edge points

and very high probabilities for most edge points. There-

fore, the change of the threshold does not strongly af-
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Table 4 Test performance Fmax for the six settings using Fit30 on the BSD test image dataset.

Setting Mean ± s.d. Max Min t-test MWW Fit3
Setbf,rand 0.5754 ± 0.0134 0.5968 0.5509 0.0000 ↑
Setbf,all 0.5707 ± 0.0104 0.5927 0.5531 0.1397 0.0726 0.0000 ↑
Setbt 0.5706 ± 0.0198 0.5966 0.5087 0.2824 0.2697 0.0000 ↑

Setbt,all 0.5706 ± 0.0166 0.5950 0.5250 0.2278 0.4705 0.0000 ↑
Setbt,rand 0.5656 ± 0.0230 0.5946 0.4998 0.0518 0.1290 0.0053 ↑
Setfull 0.5684 ± 0.0159 0.5939 0.5087 0.0743 0.2697 0.0006 ↑
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Fig. 6 Recall and precision for Tgg, Tsd, Thg, xbayes, and
an evolved program.

fect the detection performance. Compared with the ba-
sic features, xbayes and the evolved program have very

high recall values for many thresholds. It seems that

the composite features from the Bayesian model can

easily discriminate pixels as edge points or non-edge
points with a set of thresholds. This is similar to the

characteristics of edge responses (high contrast) on the

composite features constructed by using Gaussian dis-

tribution estimation. Whether the multivariate density

using other distributions can be used to obtain rich edge
responses will be investigated in the future.

5.3 Fitness Functions Fit3 vs Fit30

Table 4 gives the means, standard deviations, maximum

and minimum of Fmax values for the six settings using

Fit30. Here, “t -test” indicates p-values obtained from

the comparisons between the relevant results (setting in
the first column as the first group) and the results from

Setbf,rand using two-sample t -tests, MWW indicates p-

values from their comparisons with the Mann-Whitney-

Wilcoxon tests, and “Fit3” indicates p-values obtained
from the comparisons between the results from Fit30
and Fit3 (using the same setting) with paired-sample

t -tests. The paired-sample t -tests are used for the com-

parisons between Fit30 and Fit3 because of the same
initial population.

There are some interesting observations from Ta-

ble 4. Firstly, the test results from Fit30 are signifi-

cantly better than the results from Fit3. It seems that

the evaluation based on three thresholds is not good to
find good features (in terms of Fmax), although Bayesian

functions or terminals give high contrast responses. A

potential reason is that Bayesian outputs are a com-

bination of basic features with the two general alge-
braic operators. Since combining the three basic fea-

tures needs multiple thresholds to find the maximum

Fit values, a program, including the combination of

Bayesian subtrees and subtrees constructed by basic

features and the two general algebraic operators, might
give rich responses on edge points and non-edge points.

After using 30 thresholds to find the maximum of Fit

as fitness for evolved programs, subtrees constructed

by basic features and the two general algebraic oper-
ators might strongly affect the fitness of the relevant

program.

Secondly, when Fit30 is used, there are no signif-

icant differences between the results from Setbf,rand
and the other settings. Using multiple thresholds is
easier to find a threshold which is closer to the op-

timal threshold for Fit. Some evolved programs eval-

uated by Fit3 are not good, but they have good bi-

nary outputs by another threshold, not including in
the thresholds used in Fit3. Since Fit30 is more rea-

sonable than Fit3 to evaluate programs’ fitness, all set-

tings have good results. From the t -tests and the Mann-

Whitney-Wilcoxon tests, there is no influence from us-

ing the Bayesian node in the function set or the terminal
set. The way of selecting the full set of basic features

or randomly selecting basic features does not obviously

affect the test performance of the evolved problems.

Thirdly, the maximum Fmax in each setting is in-
creased. It seems that the ability to find good programs

to construct high-level features is improved after using

Fit30.

Lastly, the worst evolved programs from settings
Setbf,rand and Setbf,all are improved obviously when

Fit30 replaces Fit3, but the worst evolved programs

from settings Setbt, Setbt,rand and Setfull become even
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worse, in terms of Fmax. It is interesting that mul-

tiple thresholds do not improve the test performance

of the worst evolved programs for the three settings.

From each setting including xbayes, the worst test per-

formance from their results is lower than the test per-
formance on each of the basic features. Therefore, the

simple Bayesian model with all basic features might

be not good to use as a terminal, and it is suggested

that the Bayesian combination technique should only
be used as a function to combine basic features.

5.4 Detected Images

Fig. 7 shows two example detected images from the
three basic features, and the best evolved programs

from Fit3 and Fit30 with setting Setbf,rand. From the

detected images, the detected images by xbayes and the

evolved programs have obviously strong responses on

true edge points, which is similar to Thg. The strong
responses on non-edge points from Thg are mostly sup-

pressed by xbayes and the evolved programs. However,

some non-edge points with high responses from Thg still

have high responses in xbayes. Comparing the responses
from Tsd and Tgg, most of the non-edge points with high

responses from Thg in these two images are obviously

decreased in the GP evolved programs. Therefore, the

Bayesian GP system effectively constructs new compos-

ite features.
From the visual results detected by the program

from Fit3, the strong responses on non-edge points from

discontinuous background areas (such as Thg) are de-

creased. Comparing with visual results from Fit3, the
responses on these non-edge points are further decreased

in the two images detected by the evolved program

from Fit30. However, the weak responses on non-edge

points from the background in the two detected images

from Fit30 are increased a bit. Since these increased re-
sponses are still obviously weaker than the responses on

edge points, the influence can be neglected. Also, from

the subjective view, the detected images from Fit30 is

thinner than the detected images from Fit3. These ob-
servations suggest that the multiple thresholds in Fit

can improve the ability of finding better programs to

construct features.

Fig. 8 shows the image 69020 detected by the best

evolved program from Setbf,rand with Fit3 and the
combination xbayes. As can be seen, the detected im-

age by the best evolved program from GP is improved

in areas 1 and 2. Also, the responses on edge points are

obviously higher than the non-edge points. Most of the
true non-edge points have very weak responses (very

dark) for this image, which is the same as the detection

result from xbayes. Although xbayes decreases responses

on most of the non-edge points, it wrongly strengthens

responses on a few non-edge points.

5.5 Example Evolved Bayesian Program

The best evolved Bayesian GP program from Setbf,rand
with Fit3 is described by Equation (15), whereBGbayes1

indicates an evolved Bayesian program, and subscript
indices 0, 1 and 2 represent the basic features Tgg, Tsd

and Thg (in bx, abbreviated from b1|x), respectively.

Function b0,1(Tgg) is used to construct a model with the

multivariate including Tgg and Tsd. Note that the pro-
posed function accepts redundant variables, such as x =

{Tgg, Tgg}. From the first part b0,1,2( b0,1(b0,1(Tgg))),

the formula aims at finding true edge points detected

by Tgg and then constructing a feature with three ba-

sic variables. Since Tgg has high recall, this first part
should be good at finding true edge points. The sec-

ond part b2(b2(b2(Thg))) only includes the basic feature

Thg. After repeating estimation on true edge points (us-

ing the second part), the responses for those non-edge
points with high responses in Thg should be decreased.

Since the output of the Bayesian function is based on

the class edge point, the accuracy (precision) for the

constructed feature should not be too low. Generally,

the responses on clear boundaries (easily detected) are
accurately given. Therefore, the second part possibly

focuses on the boundary detection.

BGbayes1 = b0,1,2(b0,1(b0,1(Tgg)))⊕b2(b2(b2(Thg))) (15)

In order to visually present the characteristics from

the two parts, Fig. 9 shows two example images de-
tected by the two parts of the best evolved method.

“First” means the images detected by the first part

b0,1,2( b0,1(b0,1(Tgg))), and “Second” for the second part

b2(b2(b2(Thg))). From the two example detected im-

ages, the second part appears to be better than the
first part to detect true edge points. Since the first part

focuses on finding edge points (possibly with low pre-

cision), the combination of both parts gives high re-

sponses on boundaries and low responses on non-edge
points. The test performances (Fmax) on the first part

and second part for the 100 BSD test images are 0.5231

and 0.5436, and the complete BGbayes1 has Fmax =

0.5847. Compared with Thg, the second part does not

improve the Fmax value, but it decreases response mag-
nitudes for non-edge points. Iteratively estimating a sin-

gle feature might be helpful to improve detection per-

formance, which is a future work.

In order to further check the performance of both

parts, Fig. 10 reveals the details of recall and precision

for the two parts of the evolved programs. From the



12 Wenlong Fu et al.

Image 376043 Ground Truth Tgg Thg

Tsd xbayes Fit3 Fit30

Image 296007 Ground Truth Tgg Thg

Tsd xbayes Fit3 Fit30

Fig. 7 Two example images detected by Tgg, Thg, Tsd, xbayes, and the best evolved programs from GP with Setbf,rand

using Fit3 and Fit30.

31

(a) Image (b) Ground Truth

3 3

2

(c) GP (d) xbayes

Fig. 8 Image 69020 detected by an evolved program from Setbf,rand with Fit3 and the combination xbayes.

curves, it is found that the recall and precision values

of the second part are almost located on the curve of

Thg. Different from Thg, the recall and precision val-

ues of the second part of the evolved program crowd in
an area (with not too low recall and not too low preci-

sion). From the view of the performance based on differ-

ent thresholds, repeating estimation of a single variable

with its estimated outputs transforms the variable val-

ues into a suitable range which is not strongly affected
by the change of a threshold. Although neither the first

part nor the second part is better than Thg, the pro-

gram combining the two parts is clearly significantly

better.

6 Further Discussions

This section discusses the influence of the general al-

gebraic operators, computational cost for the settings,

and convergence of the GP system.

6.1 Influence of General Algebraic Operators

The results from Fit3 and Fit30 (in Tables 2 and 4)

show that multiple thresholds obviously affect the test

performance of the evolved programs. When Setbt and

Fit3 are used, the GP system only finds xbayes as the
final solution. However, when Setbt and Fit30 are used,

the evolved programs are significantly better the results

from Setbt with Fit3.
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Fig. 9 Two example images detected by two parts of the best evolved method from GP.
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Fig. 10 Recall and precision for an evolved program, its two
parts and Thg.

Since Fit3 mainly focuses on selecting programs with
high contrast edge responses, the two general algebraic

operators do not work well on combinations of basic

features. If the terminal set only includes x and the

function set only includes the two general algebraic op-
erators, the test performance (Fmax) for using Fit3 is

0.5459±0.0087. From the evolved programs, it is found

that 25 of the 30 evolved programs are equal to Thg.

Therefore, it is hard to find a good combination of basic

features when Fit3 is used. This suggests that combin-
ing basic features with the two general algebraic opera-

tors might not be good to construct composite features

with high contrast edge responses.

When Fit30 is used to evolve programs, the ter-

minal set only includes x, and the function set only
includes the two general algebraic operators, the test

performance (Fmax) is 0.5714± 0.0125. As can be seen,

only using the two operators can also obtain good com-

posite features. The test performance on Setbt with
Fit30 is very close to the test performance without

using xbayes. In order to check whether the evolved

programs from Setbt with Fit30 include any xbayes,

the evolved programs are simplified. From the simpli-

fication, the number of the evolved programs without
xbayes is only nine out of 30 (less than one third). There-

fore, xbayes is still helpful to construct good compos-

ite features. Equation (16) gives an evolved program

BGbayes2 (Fmax = 0.5941) from Setbt with Fit30, where
3

8
and 5

8
are scale parameters after simplification. The

evolved programBGbayes2 includes xbayes, Thg and Tgg.

BGbayes2 =
3Tgg

8
⊕

5Thg

8
⊕ [(Thg ⊖Tgg)⊖ (xbayes ⊕Thg)]

(16)

Fig. 11 shows two example images detected byBGbayes2 ,

and an evolved program without xbayes (from Setbt us-
ing Fit30, and Fmax = 0.5940). Comparing the visual

results, the red circled areas (marked as number 1) in

the two images detected by the evolved program with-

out xbayes have lower edge responses than the relevant

results from BGbayes2 . A reason is that the responses
on composite features combined by the general alge-

braic operators are dependent on the responses in the

basic features, but Bayesian programs increase the edge

response contrast. Since the technique only using gen-
eral algebraic operators is different from the Bayesian

technique, further investigation on both techniques in

the GP system will be conducted in the future.

6.2 Computational Cost

Table 5 gives the training time (mean± standard devia-

tions in seconds) for evolving programs by using the six

settings respectively. Here, the p-value is obtained from
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BGbayes2

Without xbayes

1

1

(a) 376043 (b) 296007

Fig. 11 Two example images detected by two evolved programs from Setbt using Fit30.

Table 5 Training time (means ± standard deviations in seconds) from Fit3 and Fit30 using the six settings.

Setting Fit3 Fit30 p-value
Setbf,rand 190.9207 ± 61.6907 19.8340 ± 13.6920 0.0000 ↓
Setbf,all 73.6683 ± 10.6519 14.9423 ± 12.3262 0.0000 ↓
Setbt 47.2473 ± 11.3341 73.2913 ± 47.6183 0.0131 ↑

Setbt,all 314.3730 ± 74.1631 53.6197 ± 46.0516 0.0000 ↓
Setbt,rand 111.5797 ± 16.8419 63.4163 ± 41.6157 0.0000 ↓
Setfull 167.5110 ± 38.1950 43.1970 ± 38.7859 0.0000 ↓

the comparison between the results from Fit3 and Fit30
in each setting by using a paired-sample t -test because

of the same initial population. Note that ↓ means that

the training time of using Fit3 is significantly longer
than the training time of using Fit30, and ↑ means that

the training from the former is significantly shorter than

the latter. All experiments are run on single machines

with CPU 3.1 GHz at the full speed state (the initial
CPU speed is 1.6 GHz for the power saving feature).

Note that the value for Fit3 or Fit30 is calculated after

only visiting the training data once, so the calculation

cost on Fit3 and Fit30 is very close when evaluating

the same program.

From an overall view, the training time for each set-

ting is quite short. The test time for detecting an image

can be ignored (several milliseconds) because all basic

features are loaded into the memory before executing a

program.

From the table, the training time of using Fit3 is sig-

nificantly longer than the training time of using Fit30
in each setting, except for Setbt. Since subtrees includ-

ing the two general algebraic operators might be im-

portant to construct a good program, the number of
Bayesian functions might be reduced in the evolved

good programs from Fit30. Note that an algebraic oper-

ator has less computational cost than a Bayesian func-

tion. Since a Bayesian function needs to calculate the
sample means and standard deviations of its input, the

training cost from Fit3 is higher than the training cost

from Fit30, except for Setbt. Since the evolved programs

from Setbt only do not include Bayesian functions, the

training time of using Fit30 in Setbt is longer than the

training time of using Fit3 in Setbt. Also there is an-

other reason for using Fit30 being longer than using
Fit3 for Setbt, that is, Fit3 in Setbt only finds xbayes

as final solutions; but Fit30 in Setbt needs to find good

subtrees constructed by the two general algebraic oper-

ators, which takes some computational cost.

6.3 Convergence

Since the population size and maximum generation are

very small in the settings, it is worth investigating the
convergence of this Bayesian GP system. Fig. 12 reveals

that the average best fitness at each generation in the

six settings when Fit3 or Fit30 is used. From Fig. 12 (a),

since Setbt only finds xbayes as the final solutions, the

best fitness value stays horizontal. The other settings
almost reach constant values after generation 40 when

Fit3 is used. For Fit30 (see Fig. 12 (b)), all settings

are approximately convergent to constant values after

generation 30. Setbf,rand and Setbf,all increase a bit in
fitness after generation 43. Therefore, Fig. 12 (a) and

(b) indicate that the GP system is convergent or very

closely convergent at generation 50.

6.4 Number of Thresholds in Fit

The fitness function Fit3 has the evolved results with

high contrast edge responses, and the evolved results
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Fig. 12 Means of the best fitness at each generation in each setting.

from Fit30 decreases the responses on non-edge points

which have strong responses in the results from Fit3.

In order to investigate the influence of the number of

thresholds in Fit, ten thresholds are used to evolve
Bayesian programs when Setbf,rand is used. Here, we

use Fit10 to indicate Fit using ten thresholds. The test

performance Fmax for Fit10 is 0.5763± 0.0152. The re-

sults from Fit10 are significantly better the results from

Fit3 and are not significantly different from the results
from Fit30.

Fig. 13 shows two example detected images from

Fit3, Fit10 and Fit30. From an overview, there is no

very obvious difference between the results from Fit10
and Fit30. Compared to the detected results from Fit3,

the detected results from Fit10 decrease the responses

on some edges and discontinuities non-edge areas, such

as the background of image 376043. Compared to the

detected results from Fit30, responses on some true
edges in the results from Fit10 are lower, such as the

boundary of the tree in image 296007. It is possible

that using a very small number of thresholds in Fit

makes a good program with the observations of most
non-edge points close to 0 and the observations of most

edge points close to 1.

When the number of thresholds used in Fit is nei-

ther small nor large, a good program can have the ob-

servations for edge points and non-edge points which
are close but located in different ranges. Since the ob-

servations of programs are close and a range between

two close thresholds is not very narrow, the edge re-

sponse contrast for detected images from Fit10 is lower

than the contrast of the detected images from Fit3.
When the number of thresholds used in Fit is large,

each range between two close thresholds is narrow so

that the observations of a good program for edge points

and non-edge points are located in different ranges. It
is possible that most distances from the observations

of edge points to the observations of non-edge points

in Fit30 are longer than the relative distances in Fit10.

Therefore, the edge response contrast for the detected

images from Fit30 is higher than the relevant contrast

from Fit10. Note that the edge response contrast is a

subjective evaluation, and it is not equal to the test
performance Fmax. To obtain very high contrast edge

responses, it is suggested that a small number of thresh-

olds should be used in Fit. However, if weak responses

on discontinuous non-edge areas are also considered, it

is suggested that a large number of thresholds should
be used in Fit.

7 Conclusions

The goal of this paper was to investigate automatic

high-level feature construction for edge detection using

GP and Bayes’ theorem. The Bayesian technique was

employed to combine basic features via using a general
multivariate normal density. The goal was successfully

achieved by evolving Bayesian programs with Bayesian

functions and terminals, and two general algebraic op-

erators.

From the results, firstly, the evolved Bayesian pro-
grams are better than the simple Bayesian model di-

rectly using the multivariate normal density, and also

have high contrast edge responses. Secondly, when the

fitness function only uses three thresholds to search pro-
grams with high contrast edge responses, the Bayesian

function with randomly selected basic features is bet-

ter than the function using the full set of basic features.

However, when the fitness function uses 30 thresholds,

there are no significant differences in terms of the test
performance Fmax. Thirdly, in order to obtain better

high contrast edge responses on composite features, us-

ing the general multivariate normal density as a func-

tion is better than using it as a terminal to evolve pro-
grams. Lastly, further analysis of the best evolved pro-

gram reveals that iteratively estimating a single feature

may help to improve detection performance.
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376043

296007
(a) Fit3 (b) Fit10 (c) Fit30

Fig. 13 Comparisons among two detected example images from Fit3, Fit10 and Fit30.

For future work, we will investigate the influence

of density functions used in multivariate distributions.

Also, the Bayesian programs will be further manipu-
lated for boundary detection.
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